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1. Introduction

It is well known that radiation losses in tokamaks rise with the periphery plasma density.

Radiative losses also have a strong maximum for the temperatures of few eV. If radiation losses

from the edge exceed the heat flux from the core thermal equilibrium cannot exist. Cold thermal

front moves to the core. It achieves the surface q = 2 generating MHD instabilities and the

disruption as the sequence [1-3]. As it has been shown theoretically as well as experimentally

central ECR heating is able to prevent the disruption [4-6]. Another way of the disruption control

is proposed in the present paper. One can heat low z impurity ions appearing in low temperature

plasmas. As the consequence electron temperature also rises in the cold region. The density of

low z ions decreases together with radiation losses, and the thermal disruption is prevented. The

feedback system may be used. For instance the impurity heating may be proportional to highest

power of impurity radiation intensity.

2. Qualitative model

Stationary thermal equation in cylindrical tokamaks takes the form
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x

∂
∂x

(xnχ⊥
∂T
∂x

) = a2(P−Q). (1)

Here x is the dimensionless minor tokamak radius, x = r
a , n = ne = ni is the plasma density,

χ is the thermal conductivity, P and Q are the thermal sources and sinks respectively, and

T = Te = Ti is the temperature. In order to clarify how the critical density may be increased the

qualitative theory is proposed. More accurate theory is developed in the next chapter.

We put n = const, nI = const, Q = nnIL(T ) , where L is the function of the temperature only.

Radiation losses are supposed to be constant in the cold region T ≤ T1 where ions with low

charges z may exist,

L =





L0, for T ≤ T1;

0, for T ≥ T1.

Heating power may be presented as the sum of Ohmic heating and auxiliary one, P = POH +

PAUX ,
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PAUX =





PA = const, for T ≤ T1;

0, for T ≥ T1.

Ohmic heating is small at the edge. We suppose that it is concentrated in the core. Instead (1)

one can use equation in slab geometry for radiative zone:

∂ 2T

∂y2 = A. (2)

Here y = 1− x, A = a2 nnIL−PAUX
nχ⊥

. Plasma density achieves its critical value if the total energy

impact is reradiated. Hence, ∂T
∂y |y=0 = 0. As a consequence, T = 0 for y = 0. In the simplest case

the plasma density as well as the impurity one does not depend on y. The thermal conductivity

is proportional to n and does not depend on the temperature, nχ⊥ = κ = const. Solution of

equation (2) corresponding to the critical density takes the form

T =
Ay2

2
. (3)

The radiation layer thickness is defined as y1 = a2POH
κA . Critical density may be calculated

from the condition T (y1) = T1 . One can get

nnIL−PAUX =
(aPOH)2

2T1κ
. (4)

The auxiliary heating power is proportional to the impurity density, PAUX = αnI . Let’s analyze

three limits.

I. Impurity density does not depend on the main plasma density. Under this condition critical

density is proportional to the inverse specific radiation power.

nc =
(aPOH)2 +2ακT1nI

2T1κnIL
. (5)

II. If the impurity density is proportional to the main plasma density, nI = λn, the critical

density

nc =
α
2L

(1+

√
1+

2(aPOH)2L2

α2λLκT1
). (6)

III. Also, the feedback system is able to provide the auxiliary heating power to be proportional

to nI
2, PAUX = δnI

2. Hence, equation (4) yields:

nc =
aPOH√

2λκT1(L−δλ )
. (7)
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Critical densities (5) and (6) provide the equal dependences on WAUX = PAUXVAUX , where

VAUX ≈ 2(2πR)(πa2)y1 is the radiative zone volume (see Fig.1)
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Figure 1: Critical plasma density as a function

of auxiliary heating power for cases I and II,

i.e. impurity ions density independant and pro-

portional to the main plasma density.
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Figure 2: Critical plasma density as a function

of the coefficient of proportionality between

impurity ions density and main plasma one, for

the case III of feedback system usage.

In accordance to expressions (5) and (6) the critical densities decrease with the impurity

density. In contrast to both the critical density has the minimum for the case III. In other words,

nc rises with the impurity density for large nI (Fig. 2)

3. Numerical model

More realistic numerical model is represented in this paragraph. Calculations have been per-

formed using transport code ASTRA [7].
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Figure 3: Critical plasma density as a function

of auxiliary heating power, ASTRA modeling.

Plasma density as well as impurity one

is supposed to be given. Thermal conductiv-

ity is supposed to take the Alcator-like form

χ = 5·1019
n m2s−1. Steady-state solution for

the critical density is found for the auxil-

iary heating power given. Tokamak parame-

ters approximately equal to JET parameters

are chosen. Carbon is chosen as the impurity

[8]. First three ions are supposed to be heated

with equal intensity. The sum of their rela-

tive concentrations may be represented as the

function f(T):
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f (T ) = 0.5(1− tanh(
T −15

5
)). (8)

In a simplest case the auxiliary heating takes a form PAUX = P0 f (T ) . The critical density as

a function of auxiliary heating power is presented in Fig.3.

4. Conclusion

Several effects may lead to the density limit in tokamaks. In particular, strong impurity radi-

ation from the edge may lead to the discharge disruptions. As it shown such type of disruptions

may be prevented by the ICR heating of low charged impurity ions at the edge, and the density

limit may be improved significantly. The heating does not disturb plasma in the core. Especially,

the feedback system may be effective if the auxiliary heating rise strongly with the radiated

power. We suppose to analyze the influence of neoclassical tearing mode on the density limit.
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