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Geodesic Acoustic Modes (GAM) are linear eigen-modes (and/or zonal flows) ®appypr
plasma compressibility in toroidal geometry, are linearly coupled to drifesvaia toroidal
side-bands of the plasma perturbations, and intrinsically involve anisotropic peotus ot
plasma pressure [1-4]. These modes are expected to play an important rolemicsiyria
drift-wave turbulence. The standard GAMs represent three limit casegeah®@des: high
frequency geodesic mode (GAM), ion-sound, and the low frequency over damped mode of

the neoclassical equilibrium. Our study of GAM continuum is limited to largeystfctor

(2g{>>1), in large aspect ratio tokamaks r/R, <<1, with circular magnetic surfaces
R=Ry(1+&cosh) whereRy is the major radius. The respective geodesic continuum is usually
calculated from the equatiahlj =0, which is reduced to the equat@( > /ar =0 after
averaging over magnetic surfaddéne geodesic oscillations of the current are compensated by
the radial polarization current [4] = i wC’E, /472 , directly produced by the oscillating
radial field, wherec, = B/\/m is the Alfvén velocity. A typical GAM continuum ifo

M=x1, N=0 is given by the equation with drift corrects similar to [1]
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Z(¢,)= J dt exd ) /(t - ¢.,) is the dispersion functio,,; =,/ T, /m,, are the thermal

velocities andl, is electron oron temperatures, respectively. Thdunction is proportional
to dimensionless inversed parallel dielectric tem®mponent, which is responsible for
Landau damping. In cold ion plasmBgs >T,;, the electron response becomes sufficiently

electromagnetic and GAM has that significant congms due to electron drift motion
= (7/4+2T, /T /RS + (@)® £ {20+ o) T[T 1 I /Ry g = T3 T, (Roco).

In this work, a method of solution of drift kineggjuation (alternative to [8]) is presented for

analyzing of the parallel kinetic response of tegpintrapped particles for GAM modes. We
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describe the Landau damping of GAMs using a me#tsopgresented in Ref 5-7. The bounce
resonance effect of trapped and untrapped particidbe GAM continuum is taken into

account via Jacobi functions by solving the drifikic equation as in Ref 5-8
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velocity space variables, 8% and the perturbed distribution for GAM$igxp&id —iat) .
Thex-term of GAM dispersion in eq.(1) is produced bgatton oscillations. In the adiabatic
approach, the electron distribution function hasfdrmf; = F;S° n, /n, where we assume

maxwellian equilibrium distributions for electroasd ions. To calculate the GAM frequency,

we use the equation for the averaged radial current
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where the integration interval is divided in unpad and trapped particles regions at
A =1-¢. Using first order Larmor radius corrections [0} the perturbed distribution

functionf = f, + f, coso + f,sing proportional toexpid —iat), whereois the angle in
the velocity space, the radial distribution funnt[®] for electrons is presented the form
ff=-v [0+ecosd)fy cosﬂ/Za)cor . Then, integrating eq.(3) for electrons we obtain

'j're =evi i /w,R, , which agrees with previous results [1-4] whererajfiical velocity space
coordinates are usef@io obtain bounce particles effectin we use a method of solution of
eq.(2) via Jacobi functions [5-7,10]. Changing ables A =1+ £ — 2¢/ k2 for untrapped (u)

particles,A = A =1+ &£ - k?/2¢ for the trapped (t) ones and introducing the naviable

n
w(n) = j /2 orn = 2am(w) + nﬂ , we get the untrapped particle solution
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A= !dn(w)ex;{&man(w)+(m—|)?}dw,

4K
B" = jj—‘}’(vex;{ZimEn(w) + (m—I)%] Now, using g-series of am/dn-functions and
0

ignoring side band harmonics AT -coefficients, we gei =772 for the elliptic integral of first

kind andA™ =B™ =J,_.(8,) B, =4Im|q, m=tl where the small parameter in expansion

_4/1_ .2 2 2 R
isq= Tk il SN K—[1+ %j Then, we use the adiabatic approagh =T kn, / n, for

ZE+4\/1—K2) 16 =

electrons to calculate the ion density oscillatjons
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We note that there is only the small correctibr: n, (1—&/25/4) of the untrapped density

oscillation to the one calculated in cylindricalo@ty space coordinates in the lindit>1.
For trapped particles, changing the angle variaes= (I/k)sin@#/2) and using the new
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in eqg. (3), we get the general solution for elmtsror ions
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Using Jacobi function properties in deeply trapppproachy << 1, we obtairkK = 77/2,

G = (4|J| (ﬁrtn)\/a//?ﬁrtn)’ D" =J3,(8), B, =8/am, Q, =«ww « =+/e/2k,vyis bounce

frequency. Integration of eq. (6) for oscillatioangity gives for trapped ions
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integration without drift corrections may be perfid directly without division in trapped
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gives thex-function, which is similar to results [8]. In coion limit ?/2k2vZ >>1,
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and untrapped regions the distribution functioegn(3) in the form

T __ &F u’A (2+2ec0s9 - A)E, sing
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0 : that gives result in eq.
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(). The effect of bounce patrticle part on GAM gasion is found to be very small due to the
terms exp(&?/ ¢ ). In the hot limit€? /2 <<1, the density oscillations
en Ewsind

=i are reduced due to this parameter, the oscillati@mges phase and
Ma, R k;ci+/2e

=u
i

the geodesic mode may disappear. The ion radihiison function adopted for continuum

calculations has view, = VA 1+ ecosd £ 2- A o, sing - f,cos?
Ew.R L+ &cosd) ) 04

General kinetic calculations are difficult to caoyt for the ion non-adiabatic part of the

geodesic field shown in eq.(5) and integratiorhef tadial current by parts produces a term

3/2

proportional tol/ (1 + &cosd — 1) *? , which diverge for trapped particles. To avoid the

problem, we assume the well-known deeply trappetictaapproach together with well

circulating untrapped particles. In this case, wggest that the perturbed distribution

function is smooth in the transition region betw&apped and untrapped particles during

integration of the radial current. Due to that mh@&n effect in integration is produced by

untrapped particles at <<land atd <1+ &£cosd by the trapped ones.

Finally, we conclude that

» Strong plasma pressure gradients may modify iom&duanch of geodesic continuum
that may stimulate the drift instability.

» Using Jacobi function, the drift-kinetic equati@successfully solved and dissipation of
the geodesic modes in trapped-untrapped partigletained in analytical form.

» Trapped-untrapped bounce resonances have weak @fféAMs in plasmas with cold

ion, but high temperature impurities may diminisANGfrequency.
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