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 Geodesic Acoustic Modes (GAM) are linear eigen-modes (and/or zonal flows) supported by 

plasma compressibility in toroidal geometry, are linearly coupled to drift-waves via toroidal 

side-bands of the plasma perturbations, and intrinsically involve anisotropic perturbations of 

plasma pressure [1-4]. These modes are expected to play an important role in dynamics of 

drift-wave turbulence.  The standard GAMs represent three limit cases of eigenmodes: high 

frequency geodesic mode (GAM), ion-sound, and the low frequency over damped mode of 

the neoclassical equilibrium. Our study of GAM continuum is limited to large safety factor 

( 22 tq >>1), in large aspect ratio tokamaks 10 <<= Rrε , with circular magnetic surfaces 

R=R0(1+εcosθ) where R0 is the major radius. The respective geodesic continuum is usually 

calculated from the equation 0=⋅∇ j , which is reduced to the equation 0=∂∂ rRjr ϑε  after 

averaging over magnetic surface. The geodesic oscillations of the current are compensated by 

the radial polarization current [4] 2
1

2 4i Ap cEcj πω−= , directly produced by the oscillating 

radial field, where 0A 4 MnBc π=  is the Alfvén velocity. A typical GAM continuum for 

M=±1, N=0 is given by the equation with drift corrections similar to [1] 
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1 ξξ ttdtZ  is the dispersion function, ieieiTe mTv ,,, = are the thermal 

velocities and Te,i is electron or ion temperatures, respectively. The χ-function is proportional 

to dimensionless inversed parallel dielectric tensor component, which is responsible for 

Landau damping. In cold ion plasmas Te>>Ti, the electron response becomes sufficiently 

electromagnetic and GAM has that significant components due to electron drift motion    
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In this work, a method of solution of drift kinetic equation (alternative to [8]) is presented for 

analyzing of the parallel kinetic response of trapped-untrapped particles for GAM modes. We 
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describe the Landau damping of GAMs using a method as presented in Ref 5-7. The bounce 

resonance effect of trapped and untrapped particles on the GAM continuum is taken into 

account via Jacobi functions by solving the drift-kinetic equation as in Ref 5-8 
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velocity space variables, s=±1 and the perturbed distribution for GAMs is )iiexp( tωϑ −±∝ . 

The χ-term of GAM dispersion in eq.(1) is produced by electron oscillations. In the adiabatic 

approach, the electron distribution function has the form ii
ee nnFf ~

00 = where we assume 

maxwellian equilibrium distributions for electrons and ions. To calculate the GAM frequency, 

we use the equation for the averaged radial current  

( ) ( ) ϑλλϑελϑε
ϑε

ε

ε

ϑ
ddfduuvej ie

s
Te

ie
r

,
1

1

cos1

1

1

00

34, cos1cos14
~ −+�

�
�

	




�

�
++= 
 ����

±=

+

−

−∞

       (3)               

where the integration interval is divided in untrapped and trapped particles regions at 

ελ −= 1 . Using first order Larmor radius corrections [9] for the perturbed distribution 

function σσ sincos 210 ffff ++=  proportional to )iiexp( tωϑ −± , where σ is the angle in 

the velocity space, the radial distribution function [9] for electrons is presented the form 

rff c
ee

001 2cos)cos1(v- ωϑϑε+= ⊥ . Then, integrating eq.(3) for electrons we obtain 

00
2 ~~

Rnevj ciTe
e

r ω= , which agrees with previous results [1-4] where cylindrical velocity space 

coordinates are used. To obtain bounce particles effect inin~ , we use a method of solution of 

eq.(2) via Jacobi functions [5-7,10]. Changing variables 221 κεελ −+= for untrapped (u) 

particles, εκελλ 2ˆ1 2−+==  for the trapped (t) ones and introducing the new variable 
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w πη += )(am2 , we get the untrapped particle solution 
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ignoring side band harmonics inmlA -coefficients, we get K≈π/2 for the elliptic integral of first 

kind and )( mml
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electrons to calculate the ion density oscillations,  
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We note that there is only the small correction )4231(0
u ε−≈ nni  of the untrapped density 

oscillation to the one calculated in cylindrical velocity space coordinates in the limit ξ>>1.  

For trapped particles, changing the angle variables )2sin()ˆ1(sin ϑκη =  and using the new 

variable � ′−

′
=

η

ηκ
ηη

0
2)sinˆ(1

)(
d

w  in eq. (3), we get the general solution for electrons or ions 
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Using Jacobi function properties in deeply trapped approach 1ˆ <<q  , we obtain 2π≈K , 
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frequency. Integration of eq. (6) for oscillation density gives for trapped ions 
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gives the χ-function, which is similar to results [8]. In cold ion limit 12 22
0

2 >>Tivkω ,  

integration without drift corrections may be performed directly without division in trapped 
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and untrapped regions the distribution function in eq.(3) in the form 
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(1). The effect of bounce particle part on GAM dissipation is found to be very small due to the 
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General kinetic calculations are difficult to carry out for the ion non-adiabatic part of the 

geodesic field shown in eq.(5) and integration of the radial current by parts produces a term 

proportional to 2/3)cos1(1 λϑε −+ , which diverge for trapped particles. To avoid the 

problem, we assume the well-known deeply trapped particle approach together with well 

circulating untrapped particles. In this case, we suggest that the perturbed distribution 

function is smooth in the transition region between trapped and untrapped particles during 

integration of the radial current. Due to that the main effect in integration is produced by 

untrapped particles at 1<<λ and at ϑελ cos1+≤  by the trapped ones.    

Finally, we conclude that  

• Strong plasma pressure gradients may modify ion-sound branch of geodesic continuum 

that may stimulate the drift instability. 

• Using Jacobi function, the drift-kinetic equation is successfully solved and dissipation of 

the geodesic modes in trapped-untrapped particles is obtained in analytical form. 

• Trapped-untrapped bounce resonances have weak effect on GAMs in plasmas with cold 

ion, but high temperature impurities may diminish GAM frequency. 
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