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Runaway positrons can be produced in the presence of runaway electron avalanches in magne-

tized plasmas. Almost all the positrons generated by avalanching runaways will run away and

are expected to have lifetimes of several seconds. For an avalanching positron distribution typi-

cal of tokamak plasmas the maximum of the synchrotron radiation spectrum should be around

a micron. The radiated power is sensitive to many plasma parameters, specially the number of

impurities, temperature and density. Apart from its intrinsic interest, detection of radiation from

positrons could be a diagnostic tool to understand the properties of the annihilation medium.

Introduction Relativistic electron populations originating from runaway electron avalanches

have been frequently observed in various plasmas, e.g. large tokamak disruptions. In post-

disruption plasmas in large tokamaks, the energy of the runaway electrons is in the10−20 MeV

range. Therefore in these plasmas the typical runaway energy is well above the threshold for

pair-production and positrons should therefore be presentin large quantities [1]. The positrons

generated by runaway electron avalanches are highly relativistic already at birth, and in ad-

dition they experience acceleration by the electric field. In the present work we calculate the

distribution of positrons and the synchrotron radiation emitted by them. The production rate is

calculated by using a pair-production cross-section validfor arbitrary energies and a runaway

electron distribution typical for avalanching. To obtain the positron velocity distribution, the

Fokker-Planck equation including the positron productionand annihilation rates and slowing-

down terms is solved. The result is used to calculate the fraction of runaway positrons and the

parametric dependences of their synchrotron radiation spectrum.

The cross-section for the production of electron-positronpairs by electrons in the field of a

nucleus isσtot = aZ2 ln3[(γe +x0)/(3+x0)], wherea = 5.22 µb (1b = 10−28 m2), x0 = 3.6, Z

is the charge of the stationary particle, andγe is the Lorentz factor of a fast electron [2]. The

positron production ratedn+
prod/dt≡ Sp is given bySp = ni

∫
p>3

fRE
e σtotved

3pe, whereni is the

number density of the ions. HerefRE
e is the runaway electron distribution function,pe = γeve/c

is the normalized relativistic momentum,c is the speed of light. If the normalized parallel elec-
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tric field E = e|E‖|τ/mec ≫ 1, the runaway tail has the character of a beam, so the parallel

momentum is much larger than the perpendicular,pe⊥≪ pe‖ ≃ pe. Here,τ = 1/4πr2
enec lnΛ

is the collision time for relativistic positrons and electrons andlnΛ is the Coulomb loga-

rithm. If E ≫ 1 most of the runaway electrons are produced by avalanching, in which case

the runaway electron densitynr increases according todnr/dt ≃ nr(E − 1)/czτ lnΛ, where

cz =
√

3(Zeff +5)/π andZeff is the effective ion charge. Then the distribution functionof rel-

ativistic runaway electrons is

fRE
e (pe‖,pe⊥) =

nrÊ

2πczpe‖ lnΛ
exp

(
−

pe‖
cz lnΛ

− Êp2
e⊥

2pe‖

)
, (1)

whereÊ = (E− 1)/(1 +Zeff) [3]. The runaway electron densitynr depends on the runaway

currentIr and the major radius of the torusR. As an example, in a post-disruption plasma with

andIr = 1 MA andR = 3 m we haveNr = 2πRIr/ec = 4×1017. Assuming that the runaways

are concentrated in a beam of total volume1 m3, the runaway density isnr = 4× 1017 m−3.

Taking only account collisions between runaway electrons and hydrogenic ions with density

ni = 5×1019 m−3, we find that the production rate isSp = (nrnic/cz lnΛ)
∞∫
3

e−p/cz lnΛσtotdp≃

1.5× 1013 s−1m−3 (for lnΛ = 10 and Zeff = 1.6). Also, collisions with thermal electrons

and impurities give contribution to the number of positronscreated. The number of positrons

created in collisions with electrons is about the same orderof magnitude as that from col-

lisions with hydrogenic ions (although the threshold momentum is higher, most of the run-

away electrons typically do exceed that as well).Sp should therefore be multiplied byMp ≡
1+ne/ni +

∑
z nzZ

2/ni, where the summation is over all impurity species (regardless if they

are fully ionized or not). Due to the substantial amount of high-Z impurities present in the post-

disruptive plasmas, this multiplicative factor can be several orders of magnitude. If we assume

that during the tokamak disruption, at least 1 g carbon is released from the wall and it is dis-

tributed uniformly in a volume of about80 m3, that would correspond to a multiplicative factor

of Mp ≃ 450. Note, thatMp can be large even ifZeff is order unity, because the expression for

Mp contains the full nuclear charge.

For the energies of interest (γ+
<∼ 50) collisional slowing down dominates, and the positron

distribution function can be calculated from the kinetic equation∂f+/∂t = sp(p+)−nev+σanf+

+ τ−1p−2
+ ∂/∂p+

[
(1+p2

+)f+

]
, where the first term on the right is the production rate, the sec-

ond is annihilation and the last is the slowing down. If the probability distribution of positrons

with momentump+ generated from electrons of momentumpe,F(pe,p+), is known the positron
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velocity distribution can be calculated by usingsp ≡ df+/dt = ni

∫
fRE
e σtotveF(pe,p+)dpe as

the source term in the kinetic equation. The mean energy of the positrons generated by an incom-

ing electron with momentumEe is 〈E+〉= Ee/3−0.0565Ee ln(Ee/3mec
2) [2]. A simple esti-

mate for the positron source can be found by solving the integral in sp assuming thatF(pe,p+)

is a delta-function at a point when the expression for the mean energy〈E+〉 given above is satis-

fied. This means thatsp can be approximated bysδ
p =

∫
fRE
e σtotveδ

(
pe−4.42p1.445

+

)
4πp2

edpe.

Note, that the production rateSp is related tosp throughdn+/dt = Sp =
∫

(df+/dt)d3p+. The

solution of the kinetic equation is given in Ref. [4] and the result shows that the total number of

positrons in the above mentioned example (forne = 5×1019 m−3) is n+ = 8×1012Mp m−3.

When the electric field is neglected, the distribution function is isotropic in velocity space,

whereas a runaway tail is pulled out in the direction of the magnetic field if the electric field is

taken into account. The positrons will run away in the opposite direction to the electrons. We

can estimate the number of positrons that run away by investigating how many positrons have

velocities above the critical velocityvc = c/
√

2E. Sincepc ≪ p+, almost the whole positron

population can be expected to run awayn+
run ≃ n+. Runaway positrons are expected to live

long since the lifetime is inversely proportional to the annihilation cross section which is a

strong function of positron energy. The synchrotron radiation of runaway positrons is peaked

in the direction opposite from that of the runaway electronsand it may be possible to detect.

For one positron, with Lorentz factorγ+ = 10 andv⊥/v‖ = 0.1, the maximum of the radiation

spectrum is around 100µm, but the velocity-integrated synchrotron spectrum for a beam-like

distribution has a maximum at a lower wavelength, around 1µm. The left figures in Fig. 1

show the synchrotron radiation spectrum and its sensitivity to the Coulomb logarithm, electron

density and effective charge. As expected, the magnitude ofthe radiated power is larger in

plasmas with a large number of impurities, high temperatureand density. The right figures

show the relative spectrum intensity to illustrate that notonly the absolute magnitude but also

the spectrum shape is dependent on the plasma parameters. The total radiated power for the

parameters used here is around0.2Mp W.

ConclusionsPositron radiation measurements, along with other diagnostics, could become

a tool to better understand plasmas containing runaway electrons. These plasmas usually are

characterized by sudden cooling and various instabilities, and are notoriously hard to diagnose.

Dedicated measurements of positron radiation may therefore lead to important new insights in

the processes that are particular for these plasmas.
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Figure 1: Synchrotron radiation spectrum normalized to thepositron number density, for an

avalanching distribution. Unless otherwise stated, the parameters are the following: magnetic

fieldB = 2.27 T, parallel electric fieldE‖ = 20 V/m, major radiusR = 1.8 m, effective charge

Zeff = 1.6, Coulomb logarithmlnΛ = 10, and electron densityne = 3× 1020 m−3. The rest of

the parameters are changed according to the legend of the figures.
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