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Introduction

Microtearing modes (MTs) are short-wavelength drift-tearing modes driven by electron tem-

perature gradients [1, 2], studied since the 1970s for theirpotential relevance in the electron

heat transport. One of the first, most widely known and apparently well established conclusions

about MTs concerns their linear stability under effectively collisionless conditions [2, 3]. Since

fusion plasmas are increasingly hot and therefore less collisional, this claim caused a lessened

interest towards these instabilities as relevant source ofturbulence. Nonetheless, several inves-

tigations in different fusion plasmas using different gyrokinetic codes have recently gathered

evidences which are partially adverse to this claim [4, 5]. However, no recent investigation ap-

pears to have faced explicitly the destabilization of MTs incollisionless regimes. This work

aims to present a first step in this direction. We present a numerical analysis over a wide set of

parameters, to show the existence of linear instabilities at vanishingly small collisionality. The

parameters will roughly range over the reversed field pinch (RFP) experimental values. We are

motivated by the reason that MTs are significantly destabilized across the electron temperature

barriers occurring during the quasi-single helicity states of this configuration [6]. Two differ-

ent approaches are adopted, to obtain independent results and more robust conclusions: (i) the

original method described in [2], to solve the linearized drift kinetic equation together with

the Ampere’s law and the quasi-neutrality condition, in slab geometry; (ii) to solve linearly the

gyrokinetic equation with the flux-tube code GS2, in a toroidal geometry.

Drift-kinetic approach

In the presence of a small but nonzero collisionality the relevant equations are given, e.g., in [3].

We rewrite them in a slightly different form, suitable for the forthcoming manipulations:

A′′(x)− k2
yA(x) = dAσ(x,ω)(ωA(x)− xφ(x)) (1)

φ ′′(x)− k2
yφ(x) = dφ dAxσ(x,ω)(ωA(x)− xφ(x)) (2)
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whereA is the parallel vector potential,φ the rescaled scalar potentialφ → φ(c/ci)(Ln/Ls), ωpe

the electron plasma frequency,cA the Alfven speed,c the speed of light,Ln,LT ,Ls respectively

the density, temperature and magnetic shear scale lengths,Lu = −(d logu/dr)−1; ci,ρi,mi,me

respectively the ion thermal speed, Larmor radius, mass, and the electron mass;ω,ν are the

eigenfrequency of the mode and the thermal collision frequency; ky the mode wavenumber

orthogonal to the equilibrium magnetic field andx the radial-like coordinate. Frequencies are

normalized to the diamagnetic frequencyω⋆, lengths toρi. The conditionTe = Ti is assumed.

The above equations are an eigenvalue problem, withω complex eigenvalue to be determined.

Preliminarily to any new investigation we checked that our solver of the above equations repro-

duces the results of [2] under the same plasma conditions. Since these studies rule out positive

growth rates whenν ≪ 1, in order to recover instability either (I) new parameter regimes must

be investigated, or (II) physical mechanisms previously unaccounted for must be added.
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Figure 1: Real frequencyωr and growth rateγ vs. ν.

Other parameters areky = 0.05, β = 0.01, η = 6. As a

convergence check, we varied the number of terms re-

tained in the expression forα (Eq. 5): solid dots for

N = 11 terms; open triangles forN = 21.

Concerning point (I): in present-days RFPs

particle fuelling is commonly provided

through recycling from the wall; accordingly,

density profiles are quite flat and the density

length scaleLn rather large. Conversely, inter-

nal heat transport barriers are commonly en-

countered, thusLT can be locally fairly small.

Finally, Ls, in a RFP, is of the order of the mi-

nor radiusa. We are thus going to study the

caseη,Ln/Ls > 1 that was not addressed in

original studies. In order to further reduce the degrees of freedom here we setLn/Ls = η.
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Figure 2: Real frequencyωr and growth rateγ vs. η . Dots are

for ν = 1, triangles forν = 0.01. Other parameters areky = 0.05,

β = 0.01.

Let us now address point (II). Any

inhomogeneity of the magnetic field

causes additional particle drifts. Within

a slab geometry, the∇B effect can be

included in the linearized drift-kinetic

equation (Eq. 1 of [2]) and appears as

an additionalkyud term: neglecting en-

tirely collisionality ν = 0 one writes

i(ω − k‖u‖ − kyud) f̃ = e/T E‖v‖ feq −
(ikyc/B)(φ − Av‖/c)(∂ feq/∂x), where f̃ is the perturbed electron distribution,feq the

Maxwellian equilibrium distribution,E‖ = iω/cA− ik‖φ , k‖ = kyx/Ls. The precise expression
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for the drift velocityud depends on the geometry of the magnetic field. Since we are interested

in qualitative results, a dimensional analysis shows that it can be written asud = εLn/Ls (in units
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Figure 3: Growth rate vs.ε, which quanti-

fies the amount of grad-B drift. Other pa-

rameters areky = 0.15, η = 20, Ln/Ls =

24. The growth rate is normalized tocs/a

(ion sound speed over minor radius).

ρiω⋆), with ε a dimensionless parameter of order unity.

The solution f̃ is used to compute the perturbed current

density, to be inserted into the Ampere’s law.

In the presence of largeη and vanishingly smallν the

conductivity σ shrinks to a very narrow layer around

x = 0, of width roughly the electron Larmor radius. It ap-

pears therefore reasonable in this case to neglect the elec-

trostatic potentialφ , that by symmetry vanishes atx = 0,

and use just Ampere law to computeω.

Results for hypotheses (I) and (II) are summarized in

Figs. 1–3. The conclusion is that instability can be found

in both regimes.

Gyrokinetic approach

The gyrokinetic equation is solved in a flux tube domain by means of the electromagnetic code

GS2, adapted to the RFP geometry [8]. The RFP geometry is characterized by a large poloidal

component of the magnetic field, withq ≪ 1 everywhere,q < 0 in the very edge andq ∼ 0.1

at mid-radius with magnetic shear ˆs∼−1. The peculiar terms of the RFP geometry are the∇B

and curvature drifts in the drift frequency, sayω∇B andωk, which include terms proportional
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Figure 4: Growth rate vs. collisionality, w/wo

electrostatic fluctuations, w/woω∇B andωk drifts.

Relevant parameters:a/LTe = 4, a/Ln = 0, ŝ =

−0.65,q = 0.12,βe = 0.05,ky = 0.1.

toB2
θ /ρ and−∂B/∂ρ respectively; the parallel gra-

dient isb ·∇ ∝ (Bθ/ρ)∂θ ; the binormal wavenum-

berky has aφ component largely dominant over the

θ component in the plasma edge.

In order to have eigenmodes sufficiently resolved,

the longitudinal grid is extended to the interval

θ ∈ [−32π,32π]. Fluctuations inφ andA‖ are con-

sidered. Plasmas with two species only, main ions

and electron, are analyzed. We start from a typical

quasi-single helicity case, but with a much higher

β , so as to get relevant growth rates in a large range

of collisionality.

We show in Fig. 4 the growth rate of the fastest growing (MT) mode for a flat-density high-

beta plasma. We have definedε∇B,εk ∈ [0,1] as parameters weighting the fraction ofω∇B and
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ωk, respectively, keepingε∇B = εk ≡ ε at the moment. While the curves have a maximum for

ν ∼ νexp, the growth rate is non-vanishing also forν/νexp≪ 1, except for the case withδφ = 0

0.0 0.2 0.4 0.6 0.8 1.0
ǫk

0.0

0.5

1.0

γ
[v

th
,i
/
a
]

ǫ∇B= 1  
ǫ∇B=1/2
ǫ∇B= 0  

Figure 5: Growth rate as a function of fractions

of ω∇B andωk. Relevant parameters:a/LTe = 4,

a/Ln = 0.2, ŝ =−0.65,q = 0.12,βe = 0.08,ky =

0.5.
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Figure 6: Growth rate vs. magnetic shear and den-

sity gradient, withδφ 6= 0. Relevant parameters:

a/LTe = 6, q = 0.12, βe = 0.05, ν/νexp= 10−3,

ε∇B = 0 = εk, ky = 0.1.

andε = 0 (δφ 6= 0 is always destabilizing, cf. [9]).

Large growth rates forε = 1 correspond to up-

shiftedγ(ky) spectra, peaked in the interval 0.5 <

ky < 1.0. It is interesting to quantify how the single

drifts separately modify the destabilization of MTs,

Fig. 5. The study is performed withδφ 6= 0, at a

higher wavenumber andβ , and much lower colli-

sionality, ν/νexp = 10−6. For ε∇B = 0 = εk MTs

are stable, at this wavenumber. As already shown

above, high∇B and curvature drifts are not the

only destabilizing mechanism at low collisionality.

In Fig. 6 we show the growth rate as a function of

both the magnetic shear ˆs and the logarithmic den-

sity gradienta/Ln for a low collisionality plasma,

ν/νexp = 10−3, and withε∇B = 0 = εk. Further-

more, the trapped particle fraction is set to 0, so

as to exclude that contribution. As is shown, the

growth rate is getting larger for increasingLn/Ls,

being L−1
s ∝ ŝ. The same scan performed setting

δφ = 0 provides MT stability for every(a/Ln, ŝ).

Conclusions

Summarizing, we have presented some parametric

studies, showing that MTs can be destabilized even in collisionless regimes under certain con-

ditions and geometries of the plasma. Extended results willbe discussed in a separate paper.
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