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On thelinear stability of microtearing modesin low collisionality regimes
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I ntroduction

Microtearing modes (MTs) are short-wavelength drift-tegrmodes driven by electron tem-
perature gradients [1, 2], studied since the 1970s for thaiential relevance in the electron
heat transport. One of the first, most widely known and appbrevell established conclusions
about MTs concerns their linear stability under effecvabllisionless conditions [2, 3]. Since
fusion plasmas are increasingly hot and therefore lessmoikl, this claim caused a lessened
interest towards these instabilities as relevant sour¢erbtilence. Nonetheless, several inves-
tigations in different fusion plasmas using different dyireetic codes have recently gathered
evidences which are partially adverse to this claim [4, Zjwdver, no recent investigation ap-
pears to have faced explicitly the destabilization of MT<allisionless regimes. This work
aims to present a first step in this direction. We present aemiaal analysis over a wide set of
parameters, to show the existence of linear instabilitiesaishingly small collisionality. The
parameters will roughly range over the reversed field piftlRK) experimental values. We are
motivated by the reason that MTs are significantly destadliacross the electron temperature
barriers occurring during the quasi-single helicity ssaté this configuration [6]. Two differ-
ent approaches are adopted, to obtain independent readlt®are robust conclusions: (i) the
original method described in [2], to solve the linearized@tddnetic equation together with
the Ampere’s law and the quasi-neutrality condition, irbgi@ometry; (ii) to solve linearly the

gyrokinetic equation with the flux-tube code GS2, in a toabigeometry.

Drift-kinetic approach
In the presence of a small but nonzero collisionality thevaht equations are given, e.g., in [3].

We rewrite them in a slightly different form, suitable foretfiorthcoming manipulations:
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whereA is the parallel vector potentiaf the rescaled scalar potentigl— ¢(c/ci)(Ln/Ls), tWpe
the electron plasma frequenay, the Alfven speed; the speed of light,.,, L1, Ls respectively
the density, temperature and magnetic shear scale lergths—(dlogu/dr)~1; ¢, pi, m, me
respectively the ion thermal speed, Larmor radius, mass tla electron massp, v are the
eigenfrequency of the mode and the thermal collision frequeky the mode wavenumber
orthogonal to the equilibrium magnetic field ardhe radial-like coordinate. Frequencies are
normalized to the diamagnetic frequenwy, lengths top;. The conditionTe = T; is assumed.
The above equations are an eigenvalue problem, aitlomplex eigenvalue to be determined.
Preliminarily to any new investigation we checked that aaver of the above equations repro-
duces the results of [2] under the same plasma conditionseS$hese studies rule out positive
growth rates whew < 1, in order to recover instability either (I) new parametsgimes must
be investigated, or (Il) physical mechanisms previouslgaoounted for must be added.
Concerning point (I): in present-days RFPs
2 B particle fuelling is commonly provided
.o y through recycling from the wall; accordingly,
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length scalé., rather large. Conversely, inter-
Figure 1: Real frequencys and growth ratey vs. v. nal heat transport barriers are commonly en-

Other parameters aig = 0.05, B = 0.01,n = 6. As a countered, thukt can be locally fairly small.

convergence check, we varied the number of terms Ei'nally L. ina REP. is of the order of the mi
1 =Sy ) -

tained in the expression far (Eqg. 5): solid dots for ) ]
nor radiusa. We are thus going to study the

N = 11 terms; open triangles fod = 21.
casen,Ln/Ls > 1 that was not addressed in
original studies. In order to further reduce the degreesedfdom here we sét,/Ls = n.

Let us now address point (II). Any

inhomogeneity of the magnetic field ¢ s
35 A 12
causes additional particle drifts. Within o /
a slab geometry, thelB effect can be - e é/_/a
included in the linearized drift-kinetic —-%_. T o .
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equation (Eq. 1 of [2]) and appears as
- _ Figure 2: Real frequencyy and growth ratey vs. . Dots are
an additionakyug term: neglecting en-

forv =1, triangles fow = 0.01. Other parameters akg= 0.05,
tirely collisionality v = 0 one writes g_ 1.

I((A) — kHUH — kyud)F = e/TEHvH feq —

(ikyc/B)(@ — Av/c)(dfeq/dX), Where f is the perturbed electron distributiorfe; the

Maxwellian equilibrium distributionf = iw/cA— ik @, k| = kyx/Ls. The precise expression
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for the drift velocityuy depends on the geometry of the magnetic field. Since we aeested
in qualitative results, a dimensional analysis shows tiearn be written agq = €L, /Ls (in units
piw,), with € a dimensionless parameter of order unity.

The solutionf is used to compute the perturbed curreﬁ/a .
density, to be inserted into the Ampere’s law. o°

In the presence of largg and vanishingly small the °= .

conductivity o shrinks to a very narrow layer around* .

x = 0, of width roughly the electron Larmor radius. It apofﬁ*
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pears therefore reasonable in this case to neglect the elec-
trostatic potentiatp, that by symmetry vanishes at= 0, Figure3: Growth rate vse, which quanti-

. fies the amount of grad-B drift. Other pa-
and use just Ampere law to compute g P

) rameters aré, = 0.15, 0 = 20,Ln/Ls =
Results for hypotheses (I) and (ll) are summarized IN The growth rate is normalized tg/a
F|gS 1-3. The conclusion is that InStabI|Ity can be fOUI(’\Qn sound Speed over minor radius)_

in both regimes.

Gyrokinetic approach

The gyrokinetic equation is solved in a flux tube domain by nseaf the electromagnetic code
GS2, adapted to the RFP geometry [8]. The RFP geometry isciesized by a large poloidal
component of the magnetic field, with< 1 everywhereg < 0 in the very edge and ~ 0.1

at mid-radius with magnetic shesr-"—1. The peculiar terms of the RFP geometry arelilie
and curvature drifts in the drift frequency, sayg andwy, which include terms proportional

toB3/p and—dB/dp respectively; the parallel gra-
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In order to have eigenmodes sufficiently resolved, &

the longitudinal grid is extended to the interval

e

000 vl L nul vl T
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sidered. Plasmas with two species only, main ions
and electron, are analyzed. We start from a typidagure 4 Growth rate vs. collisionality, w/wo

- . . . . . electrostatic fluctuations, w/ anday drifts.
guasi-single helicity case, but with a much higher s andok

_ Relevant parameterst/Lt, = 4, a/Lhp =0, $=
B, so as to get relevant growth rates in a large ran9865,q 042, = 0.05,k, = 0.1.
of collisionality.
We show in Fig. 4 the growth rate of the fastest growing (MT)d@ador a flat-density high-

beta plasma. We have definegk, & € [0, 1] as parameters weighting the fractionwfg and
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. respectively, keepingg = & = € at the moment. While the curves have a maximum for
V ~ Vexp, the growth rate is non-vanishing also fofvexp < 1, except for the case wiihp =0
ande =0 (¢ # O is always destabilizing, cf. [9]).

Large growth rates foe = 1 correspond to up- o R

_ B, eyp=1/2
shifted y(ky) spectra, peaked in the intervalbo< < ® cgp=0 /

051 s
ky < 1.0. Itis interesting to quantify how the single™
-

th.z/

drifts separately modify the destabilization of MTs,
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Fig. 5. The study is performed withg # 0, at a 00 02 04 06 08 1.0

higher wavenumber anfi, and much lower colli-

. . 6 Figure 5: Growth rate as a function of fractions
sionality, v/vexp= 107°. For ;g = 0 = & MTs
of wog and wy. Relevant parameterayLy, = 4,

are stable, at this wavenumber. As already shown _ o2 s— 0.65,q=0.12,p.=0.08 k =
above, highOB and curvature drifts are not the.s.

only destabilizing mechanism at low collisionality.

In Fig. 6 we show the growth rate as a function of 1.075
both the magnetic shearand the logarithmic den- tor

sity gradienta/Ly, for a low collisionality plasma, § 1.0

v/vexp= 1073, and withegg = 0 = &. Further- |

more, the trapped particle fraction is set to 0, so 0-000

0.0 -
as to exclude that contribution. As is shown, the 02 04 06 08 10 12
S
growth rate is getting larger for increasing/Ls,
Figure 6: Growth rate vs. magnetic shear and den-
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beingLs™ [ S The same scan performed Settm&y gradient, withd@ # 0. Relevant parameters:
3¢ = 0 provides MT stability for everya/Ln,$).  a/L; —6,q=0.12, B = 0.05, v/vexp= 103,

Conclusions eog = 0= g, ky=0.1.

Summarizing, we have presented some parametric
studies, showing that MTs can be destabilized even in amtlisss regimes under certain con-

ditions and geometries of the plasma. Extended resultdwitliscussed in a separate paper.
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