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I.  Introduction 

With the progress of the ultra-short pulse laser technologies, intensities will reach 

10
22

W/cm
2
 [1]. We can distinguish physical regimes by the laser intensity in laser-electron 

interactions. With the intensity of 10
18

W/cm
2
, the electron becomes relativistic since the laser 

drives it to the speed of light. This is the region where we need to consider the ponderomotive 

force effect. As the intensity goes up to 10
22

W/cm
2
, it is predicted that the ‘radiation reaction’ 

effect appears [2], which is our main interest in this work. Radiation reaction is called 

‘radiation damping’, as well. This effect is related to the bremsstrahlung from the electron. 

We can consider the bremsstrahlung which is the kinetic energy loss of the electron. If this 

energyloss is significant, the electron loses most of its inertia and is accelerated by the 

external force easily. This mechanism of the inertia change due to the bremsstrahlung is 

called radiation reaction or radiation damping. In order to  formulate the phenomena, we 

need to treat it as a certain force in the equation of motion.  

The original research of radiation reaction was related to the classical model of the 

electron by H. A. Lorentz in 1916 [3]. He considered the electron without quantum theory. 

The summary of his model is as follows: The charge of the electron is distributed on the 

surface of the sphere with the classical electron radius rclassic=O(10
-15

). One of the small 

charged elements interacts with other elements through the Liénard-Wiechert electromagnetic 

field. When the electron moves, the self-interaction force (not the external force) works on the 

electron due to the directivity of the Liénard-Wiechert field. This self-interaction is the 

radiation reaction. The equation of motion with radiation reaction in the nonrelativistic regime 

by Lorentz is called the Lorentz-Abraham (L-A) equation, 

 ex 0 0m m  v F v . (1) 

Here, 2 3

0 0 06e m c   and c  is the speed of light. P. A. M. Dirac suggested the 

relativistic equation of L-A’s with Lorentz metric g , the signature of this is       [4] 

 
2

0 0
0 Laser 0 0 2 2

dw d w m dw dw
m QF w m w

d d c d d

  
 






   

 
   

 
 (2) 

where,   is the proper time, w  is the 4-velocity defined as ( , )w c v  and 0m  is the 

experiential rest mass of the electron. This Lorentz-Abraham-Dirac (LAD) equation and L-A 

equation have a significant defect in the energy exponential divergence called the run-away. 
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There are many methods to solve this (the approximation of the radiation reaction force [5], 

new assumptions of the model [6]). In this work, a new equation of motion with the radiation 

reaction is derived. In the next chapter, we will show the outline of the derivation in the single 

electron system with the "off-shell" models. 

 

II. Radiation Reaction with the "Off-Shell"-renormalized mass model 

The LAD equation is satisfied with the relativistic relation of 0w dw d

   . In another 

expression, we often use the relation, 

    2 2

0 0 0m w m w m c

  , (3) 

which is called the "on-shell" state. This Eq.(3) leads to concrete definitions of the 4-velocity 

and the4-force, etc. But, the radiation reaction is the self-interaction in QED [7]. In this theory, 

it can be transformed from particles to fields, or from fields to particles. Our rest mass in the 

classical theory is the renormalized mass in QED. This mass includes the electromagnetic mass 

which is converted from the Liénard-Wiechert (Coulomb) field. And these fields imply the 

vacuum polarization around an electron. We need to consider the "off-shell" model with a 

variable-renormalized mass. Now, we consider the equation of motion with the radiation 

reaction by proceeding stages. 

step 1)  Newton's equation is, 0 exm dw d F   . However, we need to take into account 

the electromagnetic mass (dressed mass) EMm  in the self-interaction of electron. 

Therefore, the equation of motion becomes,  0 EM exm m dw d F   . Now, it is 

noted EMm  is constant. But, this motion is different from the original Newton's 

equation. Here, the external force is defined as  

 0 EM
ex ex

0

m m
F F

m

 
  , (4) 

then, the equation of motion is 

  0 EM ex

dw
m m F

d





  . (5) 

These two equations reproduce the original Newton's equation. 

step 2)  The energy loss of the bremsstrahlung is expressed by    0 0m dw d dw d

    

in the covariant form [5,6]. From the theory of Einstein, the mass is equivalent to the 

energy (the relation, 2E mc ). Therefore, if we treat the bremsstrahlung as the mass 

changing, 
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 0 0

2

dm m dw dw

d c d d





  
  . (6) 

The mass of the electron can't be represented by a constant any longer. 

step 3)  The mass before the renormalization is defined as 

      0 EM 0m m m m f      . (7) 

Here, we consider that 0m  is the renormalized mass. Now, the 4 momentum is 

defined as p mw  , the equation of motion becomes 

 ex

dp
F

d





 . (8) 

Equation (4) and Eq.(7) are substituted for Eq.(8), 

  
 

ex

0

md
m w F

d m

 



    , (9) 

 
 

0 0 ex

0

ln
mdw d

m m w F
d d m


 

 

 
  

 
. (9)' 

Here, we replace  0m m  , in the bremsstrahlung energy loss of Eq.(6), 

  
 

  0

2

1
ln

dmd dw dw
m

d m d c d d




 


    

     . (10) 

Solving this equation, 

    0
0 2

exp
dw dw

m m d
c d d





  

 

  
     
  

 . (11) 

In the classical theory, the electromagnetic mass always has an infinite value [3,5]. It is 

introduced that the infinite parameter 0   with   , (11) is replaced, 

      0
0 02

exp
dw dw

m m d
c d d





   

 

  
          
  

 . (11)' 

Here, we assume   0    and recover the original mass state. By another 

expression, the mass before the renormalization without the radiation reaction is  

   0 0expm m    . (12) 
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This recovery process must be treated in QED or any higher-theory, not classically. The two 

equations, Eq.(9)' and Eq.(11) become 

 0
0 ex 0 2

dw dw dw d
m F m w

d c d d d

 
 

   

 
   

 
. (13) 

The mass relation of Eq.(11)' has, of course, time dependence. Since, 0  is too large, we 

cannot observe the recovering process in Eq.(11)', the component of    can be negligible. 

It can be noted    is taken into 0 . In a rough estimation, Eq.(13) without the mass 

recovery process is, 

0 0
0 ex 2

dw m dw dw
m F w

d c d d

 
 

  
  , (14) 

This equation is the approximation of the LAD equation, without the Schott term. Instead of the 

on-shell relation of 
2w w c

  , Eq.(13) with the Eq.(11)' and ex 0F    becomes 

    2

0 0expm w w m c

    . (15) 

This is the off-shell relation which is corrected to the on-shell condition. 

 

III.  Summary 

In this research, we investigated radiation reaction which is a new generation physics, but an 

old problem of the classical theory. Our final result is Eq.(13) or Eq.(9) with Eq.(11)'. The new 

point of view is by using the mass before renormalization (see Eq.(8)). Based on previous 

reviews, the motion follows Eq.(14) in the ultra-intense laser electron interaction [2,6]. 

Therefore, d d  should be smaller than other terms, the mass recovers more slowly than the 

radiation duration. The detail of this mechanism will be discovered by QED, or other theories. 
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