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Since 1994, when “plasma crystals” were observed for the first time in experiments [1–3], 

there have been a number of studies of crystal structure and phase transitions; see, e.g., [4]. 

Most of the experiments were performed in radiofrequency (rf ) discharges, where the micron 

sized particles are levitated in the electric field of the lower electrode sheath in ordered 

structures with one or a few horizontal particle layers. The waves in one-dimensional (1D) 

and two-dimensional (2D) lattice consisting of charged particles have been studied 

extensively [5,6]. Three-dimensional (3D) crystals were also observed in some experiments, 

where the particles order themselves in fcc, bcc, and hcp lattices [7]. Wang et.al.[8] has 

studied the linear and nonlinear waves in (3D) simple cubic configuration. The state of an 

infinite system of particles with Yukawa pair interaction is determined by the coupling 

strength between the particles (parameter   is measured in units of the potential energy of 

interaction between neighboring particles normalized by their mean kinetic energy) and the 

lattice parameter κ . For 310~ , 5.21~  , the state of particles can crystallize into bcc 

configuration. 

 In this paper we will derive a nonlinear equation implying the evolution of longitudinal dust 

lattice wave in special directions, by considering a potential energy of the type of Deby-

Huckle and using continuum approximation. 

Consider a three-dimensional cubic crystal with lattice spacing a  consisting of negative 

charge dust grains q  and mass M , modeled as point charges. In order to find the equation of 

motion for the  lmn ,, 'th particle, we only consider the forces exerted on that particle by 8 particle of 

first  neighbors (at the distance of  a23 )  and 6 of the second  neighbours (at the distance of a  ) 

which are expressed as follow at equilibrium position;  iii llmmnn  ,, . At equilibrium let the 

 lmn ,, 'th particle in the origin, then the positions of the eight nearest neighbour particles are 

    81,,2,2,2,,  iaaalmn iii  and the second neighbours are at   )0,0,(,, almn iii  , )0,,0( a , 

149,),0,0(  ia . Particle displacement of i'th particle from equilibrium position can be written as 

),,( iii wvu , so distance between particle in origin  0,0,0  and i'th particle obtain as the form of 

),,( wwlvvmuun iiiiii  , here ),,( wvu refers to displacement of the particle in origin, from its 

equilibrium position.  
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We assume that there is elastic force between two arbitrary particles. In order to reach that mean we 

expand the Debye–Huckel interaction potential energy, namely  rrQU(r) D 0
2 4/]/exp[   around 

equilibrium at 0r=r . 

 4
03

3
02

2
01 )(

4

1
)(

3

1
)(

2

1
)(

iiiiii
rrGrrGrrGrU                                                                                (1) 

upon defining 
ii r=r2

2

|
r

U
=G

01



, 

ii r=r3

3

|
r

U
=G

02

1
2




, 

ii r=r4

4

|
r

U
=G

06

1
3




and 

i
r0 is equal to a  if 81  i (first 

neighbours) and it is equal to a23 when 149  i (for second neighbours) and the distance between 

particle in origin and the i'th particle is 222 )()()( iii zyxr
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 where                                                                                                               

  iinmliii nuunux                                                                                                                   (2-a) 

  iinmliii mvvmvy                                                                                                                 (2-b) 

  iinmliii lwwlwz                                                                                                              (2-c) 

In the case of propagating the longitudinal wave in (1,0,0)-direction ( 0 wv ), Continuum 

approximation can be used when the typical length scale of the wave is greater than the inter-particle 

spacing. In this way we expand iu around u , 
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 so the equation of motion for ( nml )th particle in the lattice is 

 .
2

22

12

2

14

4

12

2

12

2

x

u

x

u

x

u

x

u

x

u

x

u

t

u








































                                                                                  (4) 

in which this parameters are defined as  ,/3 1
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By the same calculations for the longitudinal wave in (1,1,0)-direction ( 0w , vu  ), and (1, 1, 

1)-direction( wvu  ), one can obtain the continuous equation of motions for both directions, 

respectively.  

for propagation along (1, 1, 0)-direction equation of motion is in the form of 
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when propagation direction is along (1,1,1)-direction, we obtain, 
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We now proceed by considering small-amplitude oscillations of the form 
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00 TkX   .                                                                                                                                   (9) 

at each lattice site. Introducing multiple scales in time and space, i.e. xX n
n   , tT n

n   

 ,2,1,0n , we develop the derivatives in Eq. (41) in powers of the smallness parameter ε and then 

collect terms arising in successive orders. The equation thus obtained in each order can be solved and 

substituted to the subsequent order, and so forth. This reductive perturbation technique is a standard 

procedure for the study of the nonlinear wave propagation often used in the description of localized 

pulse propagation, prediction of instabilities, etc. This procedure leads to a dispersion relation of the 

form in first order of ε, 

   422 kk    ,                                                                                                                            (10) 

so, the group velocity is 
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and we obtain in the third order, the nonlinear Schrodinger equation, 
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where the slow variables ( , ) are ( 2T , 11 TvX g ),The dispersion coefficient ( P ) and the nonlinearity 

coefficient ( Q ) are    26 22 kvP g   ,  )(226 242422   gvkkkQ  respectively. 

In Fig. 1 the dispersion coefficient of longitudinal waves has been showed. it is obvious that the 

dispersion coefficient depends on the propagation direction, this is because of bcc configuration is an 

anisotropic lattice.  In Fig. 2  nonlinearity coefficient of longitudinal waves has been showed. As it is 

shown in the figure, because of the anisotropy the bcc lattice, nonlinearity coefficient depends on the 

propagation direction of the wave, too. 

 

 
Fig.1   The dispersion coefficient of the longitudinal dust-lattice 

wave as a function of the normalized wave-number, for wave 

propagating along (1,0,0)-blue line, (1,1,0)-red line, (1,1,1)-green line 

directions. 
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Fig. 2   The nonlinearity coefficient of the longitudinal dust-lattice 

wave as a function of the normalized wave-number, for wave 

propagating along (1,0,0)-blue line, (1,1,0)-red line, (1,1,1)-green line 

directions. 
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