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Since 1994, when “plasma crystals” were observed for the first time in experiments [1-3],
there have been a number of studies of crystal structure and phase transitions; see, e.g., [4].
Most of the experiments were performed in radiofrequency (rf ) discharges, where the micron
sized particles are levitated in the electric field of the lower electrode sheath in ordered
structures with one or a few horizontal particle layers. The waves in one-dimensional (1D)
and two-dimensional (2D) lattice consisting of charged particles have been studied
extensively [5,6]. Three-dimensional (3D) crystals were also observed in some experiments,
where the particles order themselves in fcc, bcc, and hep lattices [7]. Wang et.al.[8] has
studied the linear and nonlinear waves in (3D) simple cubic configuration. The state of an
infinite system of particles with Yukawa pair interaction is determined by the coupling
strength between the particles (parameter T is measured in units of the potential energy of
interaction between neighboring particles normalized by their mean Kkinetic energy) and the
lattice parameter ». For r~10°, x~1-25, the state of particles can crystallize into bcc
configuration.

In this paper we will derive a nonlinear equation implying the evolution of longitudinal dust
lattice wave in special directions, by considering a potential energy of the type of Deby-
Huckle and using continuum approximation.

Consider a three-dimensional cubic crystal with lattice spacing a consisting of negative
charge dust grains g and mass M , modeled as point charges. In order to find the equation of
motion for the (n,m,1)'th particle, we only consider the forces exerted on that particle by 8 particle of

first neighbors (at the distance of J§/2a) and 6 of the second neighbours (at the distance of a )
which are expressed as follow at equilibrium position; (n+n;,m+m,1+1;). At equilibrium let the
(n,m,1)'th particle in the origin, then the positions of the eight nearest neighbour particles are
(nj,m;,l;)=(+a/2,+a/2,+a/2,),i=1-8 and the second neighbours are at(n;,m;,l;)=(+a,0,0), (0,+a,0),
(0,0,+a),i =9-14. Particle displacement of i'th particle from equilibrium position can be written as
(u;,v;,w;), so distance between particle in origin (0,00) and i'th particle obtain as the form of
(n; +u; —u, m; +v; —v, I; +w, —w), here (u,v,w) refers to displacement of the particle in origin, from its
equilibrium position.
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We assume that there is elastic force between two arbitrary particles. In order to reach that mean we
expand the Debye—Huckel interaction potential energy, namely U(r)=Q?exp[r/Ap]/47s,r around
equilibriumat r=r, .

u(r) ;%GL (r-r)> +1c;2i (r—1,)° +1(33i (r—rp)* +-- (1)

2 3, 4
upon defining G, :68—U|r o o G2 = ;Zg b=r, + Gs = GZU k=, and r, is equal to a if 1<i<8(fjrst
1 r 1 1

neighbours) and it is equal to J§/2awhen 9 <i <14 (for second neighbours) and the distance between

particle in origin and the i'th particle isr, :\/(xi)2 +(y,)? +(z)* where

% = (U +0) = Uy =AU, +1; (2-a)
Y = (v +m) =V = AV, +m, (2-b)
z; = (W + 1) = Wy = AW, +1; (2-c)

In the case of propagating the longitudinal wave in (1,0,0)-direction (Av=Aw=0), Continuum
approximation can be used when the typical length scale of the wave is greater than the inter-particle
spacing. In this way we expandu; around u,,

au n?o*u ndddu ntotu
U =u+n—+—+—+——+—"

" 202 6ol 24ax4 (3)
so the equation of motion for (nml )th particle in the lattice is
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[ j @)
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in which this parameters are defined as o =(a2/361+a261'j/M, B =(a4/144Gl+a4/1261')/M,

y1:(2a2/361+J§a3/9G2+2a3<32'j/|v| and 51=(—2a2/961+2\/§a3/9G2+a4/1263+3a4G3') .

By the same calculations for the longitudinal wave in (1,1,0)-direction (Aw=0, Au=Av), and (1, 1,
1)-direction( Au=Av=Aw), one can obtain the continuous equation of motions for both directions,
respectively.

for propagation along (1, 1, 0)-direction equation of motion is in the form of

o%u 82u 4u ou 0% au o2

ou_ LR A ) 5
atg 6 A2 ﬂZ 72 ox 6x2 Z[axj 6x2 ( )

by introducing parameters o, = (4512 /3G, + aZGlljl M, B, = [a“ /9G, +a*/12 Gl,)/ M,
Vs = (8a2/3Gl 11613a%/9G, +3a%G, + 2aSGZ'J/ M and

S, = (— 56a2/9G, +324/3a%/9G, +16a*/3G, —9a2/2G, +6a%G, + 3a4G3'j/ M

when propagation direction is along (1,1,1)-direction, we obtain,

R o
o2 St el o)

by defining o = (7a2 /3G, + azel'j/ M, by = (ela“ 144G, +a’/12 Gl')/ M,
ya= (2a2 /3G, +44/3a°G, + 332G, + a3GZ']/ M and

5y = [4a2 /9G, +24/3a3/9G, +547a%/12G, - 322G, +9a°G, + 3a4<33')/ M .
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We now proceed by considering small-amplitude oscillations of the form

U=a +&%U, +&3ug+--- (7
U, =Zunjej‘9+C.C , (8)
i

at each lattice site. Introducing multiple scales in time and space, ie. X,=&"x , T,=&"t
(n =0,1,2,--- ), we develop the derivatives in Eq. (41) in powers of the smallness parameter € and then
collect terms arising in successive orders. The equation thus obtained in each order can be solved and
substituted to the subsequent order, and so forth. This reductive perturbation technique is a standard
procedure for the study of the nonlinear wave propagation often used in the description of localized

pulse propagation, prediction of instabilities, etc. This procedure leads to a dispersion relation of the
form in first order of ¢,

@2 = ok —,Bk4 ’ (10)
so, the group velocity is
3
Vg = M , (11)
w

and we obtain in the third order, the nonlinear Schrodinger equation,

d%uy,

. Ou
_11+P 652 +Qull‘ull‘2 =0 , (12)

! or
where the slow variables (7, &) are (T,, X; —v4T; ), The dispersion coefficient (P ) and the nonlinearity
coefficient (Q) are P= (a—vg —6,61(2)/20) , Q= —k2y2/6ﬂa)—ék4/2a)—y2k4/(2a)(v§ —a)) respectively.
In Fig. 1 the dispersion coefficient of longitudinal waves has been showed. it is obvious that the
dispersion coefficient depends on the propagation direction, this is because of bcc configuration is an
anisotropic lattice. In Fig. 2 nonlinearity coefficient of longitudinal waves has been showed. As it is

shown in the figure, because of the anisotropy the bcc lattice, nonlinearity coefficient depends on the
propagation direction of the wave, too.
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Fig.1  The dispersion coefficient of the longitudinal dust-lattice

wave as a function of the normalized wave-number, for wave

propagating along (1,0,0)-blue line, (1,1,0)-red line, (1,1,1)-green line

directions.
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Fig. 2 The nonlinearity coefficient of the longitudinal dust-lattice
wave as a function of the normalized wave-number, for wave
propagating along (1,0,0)-blue line, (1,1,0)-red line, (1,1,1)-green line
directions.
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