
MHD turbulence simulations with discontinuous Galerkin methods

J. Nunez1, C.-D. Munz1, J. Tejeiro2

1Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Stuttgart, Germany
2Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá, Colombia

Introduction

The special relativistic magnetohydrodynamics equations model a wide variety of physical phe-

nomena in particle physics as well as in astrophysics. They are quite used in relativistic astro-

physics where high energy and intense magnetic fields effects play a very important role. Typi-

cal examples in this scenario are relativistic jets in young stellar objects and extragalactic radio

sources, accretion flows around massive compact objects, pulsar winds and gamma ray bursts.

Due to the high complexity of this equations, solving them analytically is only possible in a few

particular and very simple cases. Therefore it is necessary to construct numerical methods to

solve them and to analyze correctly astrophysical phenomena.

In computational fluid dynamics, high order numerical methods have gained quite popular-

ity in the last years due to the need of high fidelity predictions in the simulations. Among these

methods, the family of Discontinuous Galerkin (DG) schemes are in discussion as future solvers

in hydrodynamic flow problems because of their excellent properties and efficiency for complex

flows and geometries [2, 5]. So far, the employment of DG schemes in numerical simulations

have been mainly concentrated in the solution of the Euler and Navier-Stokes equations as well

as the Maxwell equations, i.e. for engineering applications. Our objective then is to construct

very high order numerical methods of Discontinuous Galerkin Spectral Element type for the

special relativistic magnetohydrodynamics equations in multiple space dimensions on struc-

tured hexahedral meshes, as we believe that simulating the fluid flow and shock wave patterns

very efficiently and with a very high accuracy will help to analyze the processes at work in these

astrophysical plasmas with much more precision.

In this work we will show numerical results of one of the standard test problems for the

SRMHD equations in 2D, the relativistic version of the compressible Orszag-Tang vortex,

which represents a good example of MHD driven turbulence development.

Relativistic Magnetohydrodynamics Equations

As we mentioned above, our goal is to solve numerically the special relativistic MHD equa-

tions. A fundamental aspect of the DGSEM methods is to write the PDE in conservation form.
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Therefore we write the SRMHD equations as follows
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3
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i=1
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∂xi = 0, (1)

where the state vector U and the flux vectors Fi are given by
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. (2)

Here, p = pg + |B|2 /(2Γ2)+(v ·B)2/2 is the total pressure, pg is the thermal (gas) pressure and

v = (v1,v2,v3) is the fluid three-velocity.

D = ρΓ, (3)

Si =
(

ρhΓ2 + |B|2
)

vi− (v ·B)Bi, (4)

E = ρhΓ2− pg +
|B|2

2
+
|v|2 |B|2− (v ·B)2

2
, (5)

where vi are the components of the three-velocity of the fluid, Γ is the Lorentz factor,

Γ =
1√

1− vivi
, (6)

ρ is the proper mass density and h is the specific enthalpy. This system of partial differential

equations is closed with an equation of state h = h(p,ρ). In the book of Anile [1], it is shown

that this system is hyperbolic for causal equations of state, i.e., for those where the local sound

speed satisfies cs < 1, where cs is defined by

hc2
s =− ρ

κh
∂h
∂ρ

, κ = ρ
∂h
∂ p
−1. (7)

Discontinuous Galerkin Spectral Element Framework

Here we will describe in brief the main features of the DGSEM framework. For more details

we suggest to see the paper of Hindenlang et al. [4] and for the full implementation, please see

the book of Kopriva [5]. We start by subdividing the physical domain into hexahedral elements.

Then, we apply a mapping to each one of these elements onto the reference unit cube element
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[−1,1]× [−1,1]× [−1,1]. Next, the partial differential equations of the SRMHD written in

conservation form are mapped into the reference element space. We apply the following ansatz

for the vector of conservatives variables and the physical fluxes: they are approximated by a

tensor-product basis of 1D Lagrange interpolating polynomials. Following the methodology of

the standard discontinuous Galerkin method, we multiply with a test function the transformed

PDE and integrate over the reference element. We get the weak form of the PDE, where the

volume and surface integrals are replaced by Gauss-Legendre quadrature rules. In the surface

integrals, the fluxes are calculated with an approximated Riemann solver. In this work were

employed the Rusanov flux, the HLLC Riemann solver [6] and the HLLD Riemann solver for

relativistic MHD. Runge-Kutta methods of fourth order of accuracy were used to evolve the

equations in time. Since the numerical solution of the SRMHD equations have to satisfy the

solenoidal constraint ∇ ·B = 0, we have chosen the Generalized Lagrange Multiplier hyper-

bolic transport correction of Dedner et al. [3], but with the speed of propagation of the local

divergence errors limited to the speed of light. Due to the presence of shocks in high energy

astrophysical phenomena, TVD limiters are required.

Numerical Calculations

Now we show results of the simulation of the Orszag-Tang problem. The Orszag-Tang Vortex

is a well-known test for MHD codes, but it can be easily extended to the relativistic MHD

equations. In this problem, the initial conditions lead to a system of supersonic MHD driven

turbulence. Therefore, this problem represents a good test for our code if we want that it be

able to handle turbulence and shocks. The computational domain is the square [0,2π]× [0,2π],

which was subdivided in 32×32 cells. The boundary conditions are periodic in all faces of the

square and the initial state is given by

(ρ,vx,vy, p,Bx,By) = (
25
9

,−sin(y),sin(x),
5
3
,−sin(y),sin(2x)) (8)

The adiabatic index is taken as γ = 1.6667, and the end time of the simulation is t f = 3.0. The

time discretization was performed by a Runge-Kutta method of fourth order of accuracy and

the polynomial degree was N = 3. In Figure 1 are shown the Bx and By at time t = 3.0.

Summary

The Discontinuous Galerkin Spectral Element framework has been successfully implemented

for the solution of the relativistic magnetohydrodynamics. The Orszag-Tang vortex was cal-

culated and it allow us to conclude that our code based on DGSEM methods is able to handle

shocks as well as turbulence. In fact, we could see the development of turbulence and the appear-

ance and interaction of shocks within the physical domain. Further work includes the simulation
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Figure 1: The relativistic version of the Orszag-Tang vortex at simulation time t = 3.0. From

left to right, Bx, and By. Calculation done with a polynomial degree N = 3 on a mesh of 32×32

cells.

of relativistic jets with different configurations of the magnetic field, where are present, in many

cases, MHD driven turbulence, like the Kelvin-Helmholtz instabilities.
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