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Introduction

The special relativistic magnetohydrodynamics equations model a wide variety of physical phe-
nomena in particle physics as well as in astrophysics. They are quite used in relativistic astro-
physics where high energy and intense magnetic fields effects play a very important role. Typi-
cal examples in this scenario are relativistic jets in young stellar objects and extragalactic radio
sources, accretion flows around massive compact objects, pulsar winds and gamma ray bursts.
Due to the high complexity of this equations, solving them analytically is only possible in a few
particular and very simple cases. Therefore it is necessary to construct numerical methods to
solve them and to analyze correctly astrophysical phenomena.

In computational fluid dynamics, high order numerical methods have gained quite popular-
ity in the last years due to the need of high fidelity predictions in the simulations. Among these
methods, the family of Discontinuous Galerkin (DG) schemes are in discussion as future solvers
in hydrodynamic flow problems because of their excellent properties and efficiency for complex
flows and geometries [2, 5]. So far, the employment of DG schemes in numerical simulations
have been mainly concentrated in the solution of the Euler and Navier-Stokes equations as well
as the Maxwell equations, i.e. for engineering applications. Our objective then is to construct
very high order numerical methods of Discontinuous Galerkin Spectral Element type for the
special relativistic magnetohydrodynamics equations in multiple space dimensions on struc-
tured hexahedral meshes, as we believe that simulating the fluid flow and shock wave patterns
very efficiently and with a very high accuracy will help to analyze the processes at work in these
astrophysical plasmas with much more precision.

In this work we will show numerical results of one of the standard test problems for the
SRMHD equations in 2D, the relativistic version of the compressible Orszag-Tang vortex,

which represents a good example of MHD driven turbulence development.

Relativistic Magnetohydrodynamics Equations
As we mentioned above, our goal is to solve numerically the special relativistic MHD equa-

tions. A fundamental aspect of the DGSEM methods is to write the PDE in conservation form.
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Therefore we write the SRMHD equations as follows
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where the state vector U and the flux vectors F! are given by
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Here, p = po+ IB|? /(2I'2) + (v-B)?/2 is the total pressure, Py is the thermal (gas) pressure and

v = (v!,v?,v3) is the fluid three-velocity.
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where V' are the components of the three-velocity of the fluid, I" is the Lorentz factor,
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p 1is the proper mass density and 4 is the specific enthalpy. This system of partial differential
equations is closed with an equation of state 4 = h(p, p). In the book of Anile [1], it is shown

that this system is hyperbolic for causal equations of state, i.e., for those where the local sound

speed satisfies ¢y < 1, where ¢ is defined by
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Discontinuous Galerkin Spectral Element Framework

Here we will describe in brief the main features of the DGSEM framework. For more details
we suggest to see the paper of Hindenlang et al. [4] and for the full implementation, please see
the book of Kopriva [5]. We start by subdividing the physical domain into hexahedral elements.

Then, we apply a mapping to each one of these elements onto the reference unit cube element
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[—1,1] x [-1,1] x [—1,1]. Next, the partial differential equations of the SRMHD written in
conservation form are mapped into the reference element space. We apply the following ansatz
for the vector of conservatives variables and the physical fluxes: they are approximated by a
tensor-product basis of 1D Lagrange interpolating polynomials. Following the methodology of
the standard discontinuous Galerkin method, we multiply with a test function the transformed
PDE and integrate over the reference element. We get the weak form of the PDE, where the
volume and surface integrals are replaced by Gauss-Legendre quadrature rules. In the surface
integrals, the fluxes are calculated with an approximated Riemann solver. In this work were
employed the Rusanov flux, the HLLC Riemann solver [6] and the HLLD Riemann solver for
relativistic MHD. Runge-Kutta methods of fourth order of accuracy were used to evolve the
equations in time. Since the numerical solution of the SRMHD equations have to satisfy the
solenoidal constraint V- B = 0, we have chosen the Generalized Lagrange Multiplier hyper-
bolic transport correction of Dedner et al. [3], but with the speed of propagation of the local
divergence errors limited to the speed of light. Due to the presence of shocks in high energy

astrophysical phenomena, TVD limiters are required.

Numerical Calculations

Now we show results of the simulation of the Orszag-Tang problem. The Orszag-Tang Vortex
is a well-known test for MHD codes, but it can be easily extended to the relativistic MHD
equations. In this problem, the initial conditions lead to a system of supersonic MHD driven
turbulence. Therefore, this problem represents a good test for our code if we want that it be
able to handle turbulence and shocks. The computational domain is the square [0,27] x [0,27],
which was subdivided in 32 x 32 cells. The boundary conditions are periodic in all faces of the

square and the initial state is given by

(. vy, 2, BesBy) = (o —sin(y),sin(x), 2, —siny), sin(20) ®)

The adiabatic index is taken as Y = 1.6667, and the end time of the simulation is 75 = 3.0. The
time discretization was performed by a Runge-Kutta method of fourth order of accuracy and

the polynomial degree was N = 3. In Figure 1 are shown the B, and B, at time ¢ = 3.0.

Summary

The Discontinuous Galerkin Spectral Element framework has been successfully implemented
for the solution of the relativistic magnetohydrodynamics. The Orszag-Tang vortex was cal-
culated and it allow us to conclude that our code based on DGSEM methods is able to handle
shocks as well as turbulence. In fact, we could see the development of turbulence and the appear-

ance and interaction of shocks within the physical domain. Further work includes the simulation
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Figure 1: The relativistic version of the Orszag-Tang vortex at simulation time ¢ = 3.0. From
left to right, By, and By,. Calculation done with a polynomial degree N = 3 on a mesh of 32 x 32

cells.

of relativistic jets with different configurations of the magnetic field, where are present, in many

cases, MHD driven turbulence, like the Kelvin-Helmholtz instabilities.
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