

Hydromagnetic solitary and shock waves in a magnetoplasma

P. K. Shukla¹, B. Eliasson², L. Stenflo³

¹ *International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics & Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany, and Department of Mechanical and Aerospace Engineering & Center for Energy Research, University of California San Diego, La Jolla, CA 92093, U. S. A.*

² *International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics & Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany*

³ *Department of Physics, Linköping University, SE-581 83 Linköping, Sweden*

We present a theory for large amplitude compressional dispersive Alfvénic (CDA) shocks and solitary waves [1] that are propagating in a warm collisional plasma across a uniform magnetic field ($\hat{\mathbf{z}}B_0$), where $\hat{\mathbf{z}}$ is the unit vector along the z -axis in a Cartesian coordinate system, and B_0 is the strength of the magnetic field. The cold and collisionless limit was studied by Adlam and Allen [2] more than fifty years ago, while Nairn *et al.* [3] derived a Kortweg-de Vries (KdV) equation that governs the dynamics of small amplitude nonlinear compressional dispersive Alfvénic (CDA) waves in a cold magnetoplasma. The restoring forces comes from the wave magnetic pressure, whereas the ion mass provides the inertia to sustain the CDA waves. The CDA wave electric field is $\mathbf{E}_\perp = \hat{\mathbf{x}}E_x + \hat{\mathbf{y}}E_y$, where $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are the unit vectors along the x and y -axes, respectively, whereas the CDA wave magnetic field is aligned along the z -axis. In a quasi-neutral plasma with $n_e = n_i \equiv n$, where n_e and n_i are the electron and ion number densities, respectively, the x components of the electron and ion fluid velocities are equal (viz. $u_{ex} = u_{ix} \equiv u$), whereas the x and y components of the electron fluid velocities differ owing to the electron polarization drift. The electrons carry currents only along the y -direction. The CDA waves compress the magnetic field-lines without bending them, and are accompanied by density perturbations.

The nonlinear propagation of one-dimensional CDA waves along the x -axis in our quasi-neutral collisional magnetoplasma is thus governed by the ion continuity equation [1]

$$\frac{Dn}{Dt} + n \frac{\partial u}{\partial x} = 0, \quad (1)$$

the momentum equation

$$\frac{Du}{Dt} + \frac{1}{2n} \frac{\partial B^2}{\partial x} + \frac{\beta}{n} \frac{\partial n^3}{\partial x} = 0, \quad (2)$$



Figure 1: Profiles of the magnetic field and plasma density for $\alpha = 0.1$, using $M = 1.3$ and $\beta = 0$ (solid curves), $M = 1.1$ and $\beta = 0$ (dashed curves), and $M = 1.3$ and $\beta = 0.1$ (dash-dotted curves). After Ref. [1].

and the induction equation derived from Faraday's law,

$$\frac{\partial B}{\partial t} + \frac{\partial(uB)}{\partial x} - \frac{\partial}{\partial x} \left[\frac{D}{Dt} \left(\frac{1}{n} \frac{\partial B}{\partial x} \right) \right] - \alpha \frac{\partial}{\partial x} \left(\frac{1}{n} \frac{\partial B}{\partial x} \right) = 0, \quad (3)$$

where n has been normalized by n_0 , B by B_0 , u by C_A , t by $1/\omega_{LH}$ and x by $\lambda_e = c/\omega_{pe}$. Here $D/Dt = (\partial/\partial t) + u\partial/\partial x$, $\beta = 4\pi n_0 k_B T / B_0^2$, $T = T_e + T_i$, $\alpha = \nu_{ei}/\omega_{LH}$, B is the sum of the ambient and wave magnetic fields, ν_{ei} the electron-ion collision frequency, $C_s = [k_B T / m_i]^{1/2}$ the effective ion-acoustic speed, $C_A = B_0 / \sqrt{4\pi n_0 m_i}$ the Alfvén speed, $\omega_{LH} = \sqrt{\omega_{ce}\omega_{ci}}$ the lower-hybrid resonance frequency, $\omega_{ce} = eB_0/m_e c$ ($\omega_{ci} = eB_0/m_i c$) the electron (ion) gyrofrequency, $\omega_{pe} = (4\pi n_0 e^2/m_e)^{1/2}$ the electron plasma frequency, m_e (m_i) the electron (ion) mass, e the magnitude of the electron charge, k_B Boltzmann's constant, T_e (T_i) the electron (ion) temperature, and n_0 the equilibrium plasma number density. In Eq. (2), we have adopted the adiabatic pressure laws [viz. $p_j = p_{j0}(n/n_0)^3$, where $p_{j0} = n_0 k_B T_j$ and where j equals e for electrons and i for ions] for the electron and ion fluids.

Assuming that n , u and B are functions of $\xi = x - Mt$, where $M = U/C_A$ is the Mach number and U the constant propagation speed, we have from Eqs. (1)–(3), respectively, $u = M(1 - 1/n)$,

$$M^2 \left(\frac{1}{n} - 1 \right) + \frac{1}{2} (B^2 - 1) + \beta (n^3 - 1) = 0, \quad (4)$$

and

$$\frac{\partial}{\partial \xi} \left(\frac{1}{n} \frac{\partial B}{\partial \xi} \right) - \frac{\alpha}{M} \frac{\partial B}{\partial \xi} - B + n = 0, \quad (5)$$

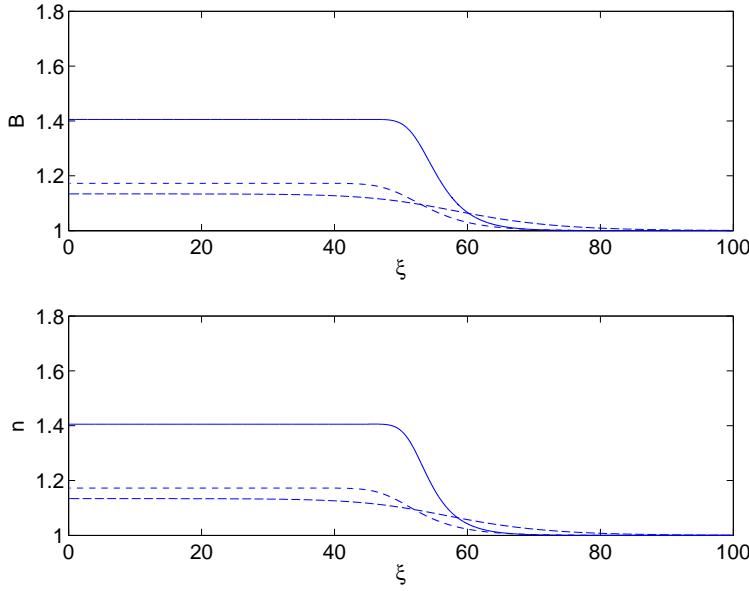


Figure 2: Profiles of the magnetic field and plasma density for $\alpha = 1.5$, using $M = 1.3$ and $\beta = 0$ (solid curves), $M = 1.1$ and $\beta = 0$ (dashed curves), and $M = 1.3$ and $\beta = 0.1$ (dash-dotted curves). After Ref. [1].

where we used the boundary conditions $u = 0$, $n = 1$, $B = 1$ and $\partial B / \partial \xi = 0$ at $\xi \rightarrow +\infty$. In the unperturbed state at $\xi \rightarrow -\infty$, we have $\partial / \partial \xi = \partial^2 / \partial \xi^2 = 0$ in Eq. (5) so that $n = B$. Inserting the latter into Eq. (4) we obtain

$$M^2 \left(\frac{1}{B} - 1 \right) + \frac{1}{2} (B^2 - 1) + \beta (B^3 - 1) = 0, \quad (6)$$

which exhibits the existent diagram for M versus B for given values of β . Eliminating a common factor $(B - 1)$, Eq. (6) can be expressed as

$$\frac{M^2}{B} - \frac{1}{2} (B + 1) - \beta (B^2 + B + 1) = 0, \quad (7)$$

which gives the amplitude of B at $\xi = -\infty$. In the cold limit $\beta = 0$, we have from (7) $M^2 = B(B + 1)/2$, which reveals that the nonlinear structures have super Alfvénic speed for $B > 1$.

Numerical solutions of Eqs. (4) and (5) for different values of M , β and α are displayed in Figs. 1–3. In Fig. 1, we used $\alpha = 0.1$, which leads to oscillatory shock structures. The amplitudes of the structures increase with increasing values of M , while they decrease significantly even for small values of β . On the other hand, for a larger value of $\alpha = 1.5$, we see in Fig. 2 that the shock structures are more or less monotonic, while their amplitudes depend on M and β in the same manner as in Fig. 1. For vanishing α , the shock structure will dissolve into a train of solitary CDA waves, as seen in Fig. 3. The amplitudes of the solitary waves increase with increasing M , while they decrease with increasing values of β .

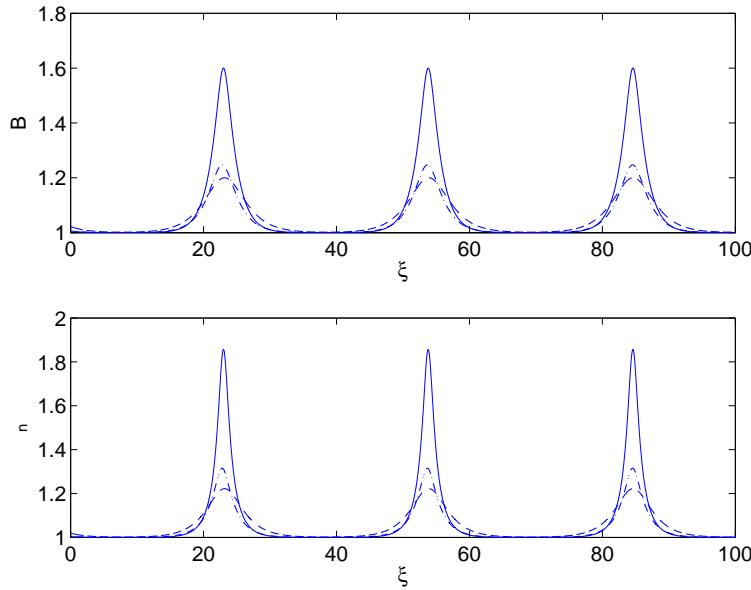


Figure 3: Profiles of the magnetic field and plasma density for $\alpha = 0$, using $M = 1.3$ and $\beta = 0$ (solid curves), $M = 1.1$ and $\beta = 0$ (dashed curves), and $M = 1.3$ and $\beta = 0.1$ (dash-dotted curves). After Ref. [1].

In summary, we have derived the governing nonlinear equations for large amplitude nonlinear CDA waves in a warm collisional magnetoplasma. A numerical analysis of the nonlinear equations in a stationary moving frame reveals that the nonlinear CDA waves appear in the form of either monotonic or oscillatory shock waves, or as a train of solitary waves. We stress that the CDA shock wave pressure might be responsible for the cross-field proton acceleration/energization over length scales that are either comparable or far exceed the electron skin depth in a magnetized electron-ion plasma.

Acknowledgments This research was partially supported by the Deutsche Forschungsgemeinschaft through the project SH21/3-1 of the Research Unit 1048.

References

- [1] P. K. Shukla, B. Eliasson, and L. Stenflo, *Europhys. Lett.* **95**, 45001 (2011).
- [2] J. H. Adlam and J. E. Allen, *Phil. Mag.* **3**, 448 (1958).
- [3] C. M. C. Nairn, R. Bingham, and J. E. Allen, *J. Plasma Phys.* **71**, 631 (2005).