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Multi-fluid transport equations on the flux coordinates in tokamaks
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Abstract

The governing equations for a multi-fluid transport code TASK/TX, essentially based

on a self-consistent two-fluid model, are derived on the axisymmetric flux coordinates.

Introduction

We have developed a one-dimensional fluid-type transport code TASK/TX [1]. The code
is essentially based on a self-consistent two-fluid model (cf. [2]), which consists of two-fluid
equations (conservation of mass, momentum and energy) plus Maxwell’s equations. It also in-
volves the equations for beam ions [3, 4] and neutrals [5]. It differs from conventional diffusive
transport codes mainly in that: (1) it does not require the explicit quasi-neutrality condition
ne = ;i Zin;, but solves the momentum equations for electrons as well with Gauss’s law (Pois-
son’s equation); (2) the neoclassical quantities such as a particle flux, the bootstrap current and
the resistivity are consistently calculated in an implicit manner that neoclassical viscosities cal-
culated by NCLASS [6] and classical friction forces are embedded in the momentum equations
[7]; and (3) a particle flux is not described as an explicit convection-diffusion form in the con-
tinuity equations, but is described through the magnetic force term in the toroidal momentum
equation [8]. A main drawback is that the governing equations are built on a circular concen-
tric equilibrium, i.e. the cylindrical coordinates (r,6, ¢). In this sense, some physics originating
from geometry such as the Pfirsch-Schliiter flux has been dropped. It is, furthermore, natural to
construct a momentum equation in the direction parallel to the magnetic field line rather than
that in the poloidal direction, because the parallel motion of particles is essential for, especially
neoclassical, transport phenomena in toroidal plasmas. Hence we will derive the governing
equations of TASK/TX in the b, V{ and Vp directions on the axisymmetric flux coordinates
(p,6,0).

Hereafter we will expand plasma parameters in terms of a small gyroradius, ¢ = o/L < 1,
and take into account their non-perturbed (lowest) part solely. Recalling that the flow within
a flux surface is O(6) and the transport flux across a flux surface is O(6%), we assume that

the drift ordering (0/0t ~ dwy, u ~ dv;) is appropriate for the momentum equations whereas the
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transport ordering (9/0t ~ 52wy, u ~ 6vy) for the otherwise equations, where w; and v; denote the
transit frequency and the thermal velocity, respectively. Note that in what follows the notation

is standard and subscripts denoting the species will be dropped unless otherwise specified.

Straight field-line coordinates and Maxwell’s equations

In the straight field-line coordinates, the magnetic field can be written as
B=VyxV(qd—-{)=VxXW;VO-yV)=VIxXViy+ Vi, x V6.

Comparing itto B=VxA, we have A = ¢, V60—V and thus A, =0, Ag =, and Ay = —y. Here,
the subscripts (superscripts) of the coordinates denote the covariant (contravariant) components

of a vector. In axisymmetric devices, the partial orthogonality, i.e. Vp-V{ =0 = V8-V, yields

R? dy, 4n* Oy,
B=V¢xVy+1V¢, here | =RB;= —— = e
CVYrIve where =R = R0 T ViR 9

Note that R?/ +/g is the flux function. B is generally expressed by the contravariant components,

such that B = B-Vp = 0 due to the definition of the magnetic surface.

Maxwell’s equations consist of Gauss’s law (Poisson’s equation), Faraday’s law and Ampere’s
law. From Faraday’s law E = —V® — A, it is found that the electric fields are strongly tied to (the
temporal change in) the magnetic fluxes, as follows:
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Ampere’s law relates (the spatial gradient of) the magnetic flux to the current. Taking the scalar
product of Ampere’s law with V{ and the subsequent flux-surface average yield
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the latter of which is not only the definition of ¢ but also one of the governing equations that
constitutes Maxwell’s equations. This is because it is just another form of Faraday’s law. Taking
the scalar product of Ampere’s law with B and then subtracting (1) give the equations for the
toroidal flux in the form:
Loy ()0t o
c? ot R% [dp|V'(R2) dp

When neglecting the displacement current term that is negligibly small, we readily find that the

(= ~Ejp). 2

1 oy Bjp -1 oy _
O

right-hand sides of (1) and (2) reproduce the expressions of the toroidal and parallel currents.
Finally, the Coulomb gauge allows us to simply write flux-surface-averaged Gauss’s law as

follows:
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Continuity equations
A flux-surface-averaged continuity equation is simply given by

10

, 1
Wa(V nO)erW_[V no{(u—ug) - Vp)l = (Sn2). )

TASK/TX is distinguished from other similar codes in that no{(u — u,) - Vp) is not approximated
by the convection-diffusion relationship, but is treated as a dependent variable: The grid velocity

u, and the flux no{u - Vp) are both self-consistently calculated in the system.

Momentum equations
The parallel motion of plasma species regulates neoclassical properties in axisymmetric sys-

tems. Using the non-conservative form of the momentum equation, we have up to O(J)

o 8<§f”> = ~(B-V-7)+(B-F)+eno(BEL) +(BS m)). (5)

p
Here, we have deliberately left some possibly higher-order terms that may be effective in some
cases, such as the source term. The lowest order of the viscosity 7 corresponds to the neoclas-
sical viscosity in this parallel equation. Therefore, the viscous term and the friction term can
be described in the manner of the moment approach [9]. An unsolved parallel heat flux, which
means that a heat flux is not a dependent variable of TASK/TX, can be expressed in the form:

q= (222 — 1\(_4)3)_1 [(221 +A72)u—D , where f AH/I, u and D denote the friction and viscosity

matrices and the parallel and diamagnetic flows, respectively. The matrices can be computed by
the Matrix Inversion [10], for example. When substituting the heat flux into (5), we have
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b
+ > [Ovalits + HR5 AT ) + C5R5 (AT |(BVaa) + anao( BE] ) + (BS ), (6)
b

where 6, denotes the Kronecker delta, A = (Zzz - ]\H/I 3,and B = 221 - ]\H/Iz.

The toroidal momentum equation is important for TASK/TX in that it governs not only radial
transport of the toroidal momentum but also provokes a particle flux as well as a j X B torque
through the magnetic force term. As seen in [7, 9], the collisional, i.e. classical and neoclassical,
particle flux is theoretically derived by the toroidal momentum equation. In conventional trans-
port codes the particle transport coefficients that are computed by external modules (cf. [6, 10])
are directly substituted in the particle transport equation, whereas in TASK/TX coupling of the

parallel and toroidal momentum equations and the continuity equations self-consistently brings
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about the particle flux. Using the conservative form of the momentum equation, we have up to
0(6%)

V'3 (V mno(Ru;)) = —(RZV{ V- 7r) +(RF;)+ eno(REg Y+ eno—w(u Vo) +(RSmzpy  (7)

While the first-order viscous stress term vanishes due to the CGL form, the second-order term
can be expressed as a combination of a convective momentum flux, a.k.a. inward pinch, and a
diffusive one plus a residual stress. The friction term can be expressed in the similar manner
as shown above. Furthermore, we have to add a turbulent force F SL that drives a turbulence-

induced quasilinear particle flux [8]. The toroidal momentum equation is finally given by

1 10 O(Ruy, ‘
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The radial momentum equation or the radial force balance equation is essentially identical to
the first-order flow within the flux surface. The leading order is O(1) for pressure and Lorentz
force terms, and the other terms are practically ineffective. It is useful to introduce the incom-
pressibility of the flow when we average the equation over the flux surface. Thus, we obtain

Opao
oy

In summary regarding the momentum equations, the dependent variables are (Buy), (Ruq;) and

0=———((B*}R*)-1*)~ eanaoa—w«Bsz% 1) + eangoI{Bug)) — eanao{ B*}{Ruaz).  (9)

(ug - Vp). A set of the governing equations is completed after further deriving the equations for

heat and beam components.
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