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Magnetic field lines in fusion plasmas are trajectories of Hamiltonian systems. The 

problem of magnetic field line transport can be treated in the framework of the theory of 

Hamiltonian systems. In this context, the concepts of symmetry, nonlinear resonance and 

chaos are essential in understanding the dynamical evolution of Hamiltonian systems. 

A magnetic field line moves through three-dimensional Cartesian space (x,y,z). But the 

Cartesian coordinates are not canonical coordinates for magnetic field lines. To obtain 

canonical coordinates, the magnetic field is expressed in a symplectic form [1] in terms of 

canonical coordinates (ψt,ϑ,ϕ) .The equations for the evolution of magnetic field lines have 

the canonical form dϑ/dϕ =∂ψp(ψt,ϑ,ϕ)/∂ϕ, dψt/dϕ=−∂ψp(ψt,ϑ,ϕ)/∂ϑ. A toroidal coordinate 

(ϕ) then plays the role of time, a toroidal flux (ψt) and a poloidal angle (θ) are the canonical 

coordinates. The poloidal flux, ψp(ψt,θ,ϕ) is the Hamiltonian. In an axisymmetric field, such 

as an equilibrium field in divertor tokamaks, one can always transform these coordinates to 

action-angle coordinates (ψ,θ) with χ =ψp(ψ)the Hamiltonian. The safety factor q 

characterizing the winding of the magnetic field lines is given by q(ψ)=1/ι(ψ)=dψ /dχ. The 

rotational transform is ι(ψ)=1/ q(ψ). q(ψ) is called the safety factor. The magnetic 

perturbations, in general, are not uniform along the toroidal, ϕ, and poloidal, θ, axes; and 

break the symmetry of the equilibrium field along the toroidal axis. In the presence of these 

non-axisymmetric magnetic perturbations, the total Hamiltonian χ can be written as χ(ψ,θ,ϕ) 

= χ0(ψ) + χ1(ψ,θ,ϕ). Here χ0 = ∫ι(ψ)dψ is the equilibrium Hamiltonian. The perturbed part of 

the Hamiltonian χ1 is a doubly 2π- periodic function of θ  and ϕ and it can always be written 

as a Fourier series, χ1(ψ,θ,ϕ) = ∑m,n [χmn(ψ) cos(mθ-nϕ+ξmn)] with m and n  are the poloidal 

and toroidal mode numbers and ξmn
  the phases of the Fourier modes with mode numbers 

(m,n).  

Any arbitrary small perturbation leads to the formation of magnetic islands near 

resonance surfaces. Resonance occurs when q(ψ=ψmn)=m/n.  These surfaces are called 

rational surfaces; and they are topologically unstable. When the islands grow in size and 
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overlap, the magnetic surface structure is lost. Regions with chaotic field line trajectories 

arise. For sufficiently small perturbation, the KAM theory [2] states that these regions are 

limited and invariant tori (KAM surfaces) remain. In the absence of particle collisions and 

magnetic drifts, these KAM surfaces act as transport barriers inhibiting radial transport of heat 

and particles which predominantly follow magnetic field lines. This leads to non-uniform 

chaotic zones consisting of interwoven chaotic, islands and regular regions, which have 

complicated influence on the chaotic dynamics, and present a challenge to control the chaos. 

Chaos control is actively studied in many fields including plasma and accelerator physics. 

Recently, a control method based on a localized control of chaos in Hamiltonian systems has 

been proposed and extensively described in [3] and applied to problems in fusion plasmas [4-

7]. The aim of this method is to reduce transport along chaotic field lines by adding a small, 

but well chosen, field perturbation to create KAM barriers in chaotic regions. An important 

and valuable feature of this method is that the perturbation that is required to control chaos is 

small compared to the size of the perturbation that creates the chaos in the first place. 

In this paper, we employ the control and our mapping method to study the effects of 

second order magnetic barriers on the stochastic fields in the DIII-D tokamak. We use a 

symplectic map to calculate the trajectories of field lines. This map is derived from an analytic 

equilibrium generating function (EGF) constructed in action-angle coordinates (ψ,θ) from the 

experimental data of the Grad–Shafranov equilibrium solver EFIT [8,9,10] for the DIII-D 

tokamak. This map preserves the symplectic topological invariance of the Hamiltonian 

system. It has also been used to demonstrate the sensitivity of stochastic broadening from a set 

of qualitatively different magnetic perturbations [10,11]. We call this map the DIII-D map. 

We analyze the DIII-D map with and without second order control terms to study the 

formation of the stochastic layer created by two locked tearing modes, and the resulting local 

diffusion of field lines. The mean square radial deviation of field lines in the predominantly 

chaotic region is calculated as the strength of the magnetic perturbation is varied. For 

magnetic perturbation, we chose two tearing modes with mode numbers (m, n) = {(3, 1), (4, 

1)}, χ1(θ, φ)=δ[cos(3θ − φ) + cos(4θ − φ)]. The (3,1) mode is resonant at ψ31 ≈1.3768, and the 

(4,1) mode is resonant at ψ41 ≈1.6622. δ is the amplitude of magnetic perturbation. Following 

[4,6], we add a second order magnetic perturbation given by  

( ) ( ) ( ) ( ) 22 21, cos 3 cos 4
2C A B Cχ θ ϕ δ θ ϕ θ ϕ= − − + −⎡⎣ ⎤⎦  to the poloidal flux χ=χ0+χ1. Here χ0 is 

the equilibrium poloidal flux, ψb denotes the location of the magnetic barrier, ωb = 

ι(ψb)=1/q(ψb), A = [d/dψ(ι(ψ))]ψ=ψb, B = 3/(3ωb-1), and C = 4/(4ωb-1). Fig. 1 shows the phase 

39th EPS Conference & 16th Int. Congress on Plasma Physics P5.023



portrait of field lines trajectories computed without [Figs. 1a and 1b] and with the control term 

[Fig. 1c]. Fig. 1c clearly shows that the phase space is more regular, less chaotic than the 

corresponding uncontrolled one (Fig. 1b) for the same physical parameters.  

   
      Fig. 1. (a) Phase portrait of magnetic field lines in DIII-D when the amplitude of resonant magnetic     

      perturbations is (a) δ=10−4, and (b) δ=1.26×10−3; and (c) same as (b) but with control term at    

      ψb=1.53981485409455 added to the poloidal flux. In these plots, 21 lines are integrated. Each line is    

       iterated for 10000 toroidal circuits of DIII-D. Initial values of ψ are chosen so that they are spaced almost  

       uniformly in the interval (1.2,1.8). 
 

Fig. 1b shows a sizable non-uniform chaotic layer between the resonance surfaces. 

The presence of surviving islands, surrounding the stable periodic points, leads to the 

deviations from the Gaussian diffusive law. The reason for this is the stickiness property of 

the KAM surfaces. In Fig. 2, we show the forward image obtained for the same physical 

parameters as in Fig. 1b. To study the effect of the second order control on the diffusion of the 

chaotic field lines in DIII-D, we calculate the radial excursions of the field lines by means of 

the mean square displacement (MSD). We start with 1000 field lines at a fixed initial value of 

ψ = ψ0 in the chaotic region, (1.5,1.53) with N=1000 randomly chosen initial values of  θ in 

the interval (0,2π). The amplitude of the perturbation is fixed at δ=1.26×10-3. Each field line is 

advanced for 10000 toroidal circuits of DIII-D. The MSD is calculated as 

( ) (22
0

1

1 N

n n ni
iN

σ δψ ψ ψ
=

= = −∑ )2 . Fig. 3 shows  2
nσ  with and without the control term.  

 Figs. 3a and b show the mean square displacements with and without the control term. 

The results clearly show a significant decrease in radial excursions of the field line in the 

chaotic region between the two primary resonances when the control term is added. Fig. 3a 

shows that initially a super-diffusive regime appears; and after about 10 iterations, the radial 

field line excursions are limited and a persistent sub-diffusive regime follows. Comparison of 

the results obtained from DIII-D and previous results on the ASDEX UG indicates that 

stronger barrier can be built in the DIII-D than in the ASDEX UG. High magnetic shear near 
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the separatrix in the DIII-D is inferred as the possible cause of this. This work is supported by 

the US DOE grants DE-FG02-01ER54624 and DE-FG02-04ER54793. This research used 

resources of the NERSC, supported by the Office of Science, US DOE, under contract  

DE-AC02-05CH11231. 

 
 

         Fig. 2. Forward images of a ensemble of initial conditions within the chaotic region for  

          the same parameters as in Fig. 2b. (a) after 5 iterations, (b) after 25 iterations. 

  
             Fig. 3a. MSD for a single magnetic surface for  

             10000 circuits. 
           Fig. 3b. MSD for 50 magnetic surfaces in the  

           neighborhood of the magnetic barrier. 
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