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1. Introduction. The results obtained in tokamaks JET, Tore Supra, spherical tokamak 

MAST and in stellarators CHS and LHD show that, with intensive heating of the plasma, 

strong anisotropy of the pressure can occur [1–5]. In this case, the standard theory of plasma 

equilibrium with isotropic pressure p  [6, 7] is not applicable. It is generally accepted that 

with pp||  (pressure along and perpendicular to the magnetic field B ) the predictions of 

this theory remain valid, if the replacement )(5.0 || ppp  is made in the expressions for 

the Shafranov shift  and the Pfirsch-Schlüter current [2–4, 6, 8]. In [6, 8] the equation for 

 was derived assuming weak poloidal dependence of ||p  and p . Here, on the contrary, we 

assume strong poloidal modulation of p , which may be possible with non-central heating. 

2. Formulation of the problem. The plasma equilibrium is described by the equation  

 Bjp


0 , (1) 

where Bj  is the current density and p


 is the pressure tensor, 
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where I


 is the unit dyadic. Following [6–8], equations for  in tokamaks and stellarators are 

derived using the model of shifted circular magnetic surfaces: 

 

cos)(0 aaRr ,         sinaz . (3) 

Here ),,( zr  are the cylindrical coordinates, 0R  is the distance from the axis of the system 

to the center of the vacuum chamber, a  is the small radius of the magnetic surface, and  is 

the poloidal angle. 

3. Parameterization of the pressure. The parallel component of (2) gives us 

 )1()( || BpBp BB . (4) 

We assume, as it is often done in theory, ),(|||| Bapp , ),( Bapp . With  

 )1)(()( 10 BBapapp m , (5) 

where )(aBB mm  on the surface consta , from (4) we obtain  
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These are the exact solutions of equation (4). They are valid for any geometry, not only for 

the case (3). For circular magnetic surfaces (3) and 22 max BBm  these functions give 
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where 012 Rapp as . Note that 0pp as  since 0p . Expressions (7) and (8) allow 

description of the profiles with a maximum at low ( 0asp ) and high ( 0asp ) field sides.  

 In contrast to the analysis in [6, 8], we assume that the poloidal variation of p , which 

is described by the term with asp  in (7), can be comparable to 0p . 

4. Two-dimensional scalar equilibrium equation. In an axially symmetric system, the 

magnetic field can be written as ( 2  is the poloidal flux) 

 FB . (9) 

From the perpendicular component of (1) it follows that )(KFF . Also, from (1) one can 

obtain the well-known (see, for example, [6, 8]) scalar two-dimensional equilibrium equation  

 
2

||

2

),(
div

r

FFBp

r

KK , (10) 

where ||1 , 2

|||| /)( Bpp . A similar equation can be obtained for stellarators, if 

 is replaced by v  on the left-hand side of (10) [8], where v2  is the average vacuum 

poloidal flux due to the helical field [7, 8]. In the simplest case, the additional terms on the 

right-hand side [8] can be neglected.  

Equation for  has been derived earlier from (1)–(3) for the plasma with 0pp as  

[6, 8]. Here, in contrast, asp  is not considered small. We use the consequence of (10): 
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where the brackets ...  denote the averaging over the volume V  between two neighboring 

magnetic surfaces: 
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where g  is the Jacobian of the transformation of Cartesian to the flux coordinates ),,( za , 

the prime means the radial derivative. The second equality with )2(4 2 aRaV c  in 

(12) corresponds to the model of circular magnetic surfaces (3), which we use further. In the 

calculations we apply the standard equilibrium theory expansions in the small parameters 

0Ra , , a , 0BBp  (the ratio of the poloidal field to toroidal one) keeping only linear 

terms in the expansions. This corresponds to the generally accepted approaches in the 

equilibrium theory [6, 7]. 

5. Equation for the Shafranov shift. With ||p  given by (6), from (11) we obtain 
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where J  is the current rotational transformation, 0B  is the toroidal field, and 

  asppdpp 5.0
2
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0

2
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00 . (14) 

The second equality in (14) is valid for p  in the form (7). 

 For stellarators, we use the equation from [8] similar to (10). In the equation for  

obtained from it, a part containing the pressure will be the same as the right-hand side of 

equation (13). Calculation of the left-hand side gives us the same result as in [7, 8]. Finally, 

we obtain a generalization of (13): 
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here h  is the vacuum rotational transform produced by the helical fields. 

 Equations (13) and (15) coincide with the known equations for  [6, 8]. Thereby we 

have shown that equations (13) and (15) can be used beyond the restrictions imposed in [6, 8] 

where the poloidal dependence of the pressure was considered small. In other words, 

equations (13) and (15) are applicable even if there is a strong poloidal modulation of p , for 

example, due to non-central intensive heating [10, 11]. 

6. Discussion. The effect of the pressure anisotropy on the MHD equilibrium, especially on 

the position of the magnetic axis, has attracted attention in connection with experiments on 

the Large Helical Device (LHD) [4]. Our analytical treatment confirms the results of 

numerical calculations [4]. In particular, we have shown that  is determined by )( 000|| pp  

even in the presence of a significant modulation of p . This explains stronger correlation of 
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the magnetic axis shift with )(~ || ppeq  than with )2(~ || pp  found in numerical 

calculations [4, 10]. The demonstrated applicability of equation (13) [6] and (15) [8] for a 

plasma with strong poloidal modulation of p  can also explain the result of [4] that the 

pressure difference from its average on the magnetic surface does not affect the Shafranov 

shift (Figs. 3–5 in [4]). It is known [9, 10] that, in conventional tokamaks and stellarators, the 

poloidal variation of ||p  must be small irrespective of modulation of p . Therefore, at small 

p  or pp||  the variation in pressure on the magnetic surface should not significantly 

affect the displacement of the magnetic axis, even if the next harmonics with 2cos , 3cos  

etc. are taken into account as in [12], which also explains the results of [4]. 

 Our conclusion about the applicability of equation (13) [6] in case of strong poloidal 

modulation of p  is also consistent with calculations in [11], where the simulations of the 

anisotropic plasma equilibrium in the JET tokamak with 6minmax pp  on a magnetic 

surface (Fig 1 in [11]) have shown that  does not depend on ||pp  at fixed 000||~ pp . 

Therefore, it can be difficult to detect the poloidal asymmetry of p  by magnetic diagnostics. 

 There is a great difference between the equilibria with pp||  and pp|| . In the 

latter case, the most interesting and different from the studied earlier weak-anisotropy case 

[6, 8] is the equilibrium with strong poloidal modulation of p . This is practically 

unexplored situation, with only known analytical approach to the problem in [12]. Here we 

applied a different technique and used less restrictive assumptions than in [12].  
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