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Shafranov shift at strong plasma anisotropy in tokamaks and stellarators
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1. Introduction. The results obtained in tokamaks JET, Tore Supra, spherical tokamak
MAST and in stellarators CHS and LHD show that, with intensive heating of the plasma,
strong anisotropy of the pressure can occur [1-5]. In this case, the standard theory of plasma

equilibrium with isotropic pressure p [6, 7] is not applicable. It is generally accepted that
with p,# p, (pressure along and perpendicular to the magnetic field B) the predictions of
this theory remain valid, if the replacement p — 0.5(p, + p,) is made in the expressions for
the Shafranov shift A and the Pfirsch-Schliiter current [2—4, 6, 8]. In [6, 8] the equation for
A was derived assuming weak poloidal dependence of p, and p, . Here, on the contrary, we
assume strong poloidal modulation of p,, which may be possible with non-central heating.
2. Formulation of the problem. The plasma equilibrium is described by the equation
0=-V-p+jxB, (1)

where j=V x B is the current density and p is the pressure tensor,

“ BB - BB
p:p||?+p_L(l_?)’ (2

where I is the unit dyadic. Following [6—8], equations for A in tokamaks and stellarators are
derived using the model of shifted circular magnetic surfaces:

r=R,+A(a)—acosd, z=asing. (3)
Here (r,g,z) are the cylindrical coordinates, R, is the distance from the axis of the system

to the center of the vacuum chamber, a is the small radius of the magnetic surface, and € is

the poloidal angle.
3. Parameterization of the pressure. The parallel component of (2) gives us
B-V(p,/B)=p.B-V(I/B). 4
We assume, as it is often done in theory, p,= p,(a,B), p, = p,(a,B). With
P, =Pp,(a)+p,(a)B,/B-1), )

where B, =B (a) on the surface a=const, from (4) we obtain
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P, = p||o(a) +(p||o ~pL)(B,/B-1)+05p,(B- Bm)z/BBm . (6)
These are the exact solutions of equation (4). They are valid for any geometry, not only for

the case (3). For circular magnetic surfaces (3) and B2 = max B? these functions give

., 0
pi ~ plo(a) + pias(a)SInz Eo (7)

. .0 . .0
P~ Pp(@) = (P — pw)(2a/R0)sm2§+ P (2a/R0)5|n4§, (8)

where p, .. =2ap,,/R,. Note that p,, >-p,, since p, >0. Expressions (7) and (8) allow
description of the profiles with a maximum at low ( p,,, > 0) and high ( p,,, <0) field sides.

In contrast to the analysis in [6, 8], we assume that the poloidal variation of p, , which
is described by the term with p,,, in (7), can be comparable to p .
4. Two-dimensional scalar equilibrium equation. In an axially symmetric system, the
magnetic field can be written as ( 27y is the poloidal flux)

B=VyxVJ+FV{. )

From the perpendicular component of (1) it follows that oF = F, (y) . Also, from (1) one can
obtain the well-known (see, for example, [6, 8]) scalar two-dimensional equilibrium equation

oVy __py.B) KK

div ’
r’ oy or’

(10)

where o =1-0, o,=(p,—p.)/ B2. A similar equation can be obtained for stellarators, if

w is replaced by y — i, on the left-hand side of (10) [8], where 27, is the average vacuum

poloidal flux due to the helical field [7, 8]. In the simplest case, the additional terms on the
right-hand side [8] can be neglected.

Equation for A has been derived earlier from (1)~(3) for the plasma with |p, .| << p.,

[6, 8]. Here, in contrast, p,,, 1s not considered small. We use the consequence of (10):

op, (v, B op,(y,B
arzdiv—o-vzl//—<ofzdiv—o-vz >:<o1’2—p”(l// )>—o1‘2—p"(w ), (11)
r r oy oy

where the brackets <> denote the averaging over the volume V between two neighboring

magnetic surfaces:

2z
<f>=divff\/§dad6dcj=% fafr(1—A'coso)do, (12)
0
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where /g is the Jacobian of the transformation of Cartesian to the flux coordinates (a,8,z),

the prime means the radial derivative. The second equality with V' =4z%a(R, +aA’/2) in
(12) corresponds to the model of circular magnetic surfaces (3), which we use further. In the
calculations we apply the standard equilibrium theory expansions in the small parameters

a/R,, |A], |aA”

, B, /By (the ratio of the poloidal field to toroidal one) keeping only linear

terms in the expansions. This corresponds to the generally accepted approaches in the
equilibrium theory [6, 7].
5. Equation for the Shafranov shift. With p, given by (6), from (11) we obtain

[(/U 3A)’/a +ﬂJa/R]BO/R _p||o+p¢00a (13)

where g, is the current rotational transformation, B, is the toroidal field, and

1 27
P = 7 J‘pLdgz P,+0.5p . (14)
T g

The second equality in (14) is valid for p, in the form (7).

For stellarators, we use the equation from [8] similar to (10). In the equation for A
obtained from it, a part containing the pressure will be the same as the right-hand side of
equation (13). Calculation of the left-hand side gives us the same result as in [7, 8]. Finally,
we obtain a generalization of (13):

Bs (172 3A) [(1,0)2°] A
R_Z(,uh J){ ;lJa Ro =M +# =Pt Ploo> (15)

here g4, is the vacuum rotational transform produced by the helical fields.

Equations (13) and (15) coincide with the known equations for A [6, 8]. Thereby we
have shown that equations (13) and (15) can be used beyond the restrictions imposed in [6, 8]
where the poloidal dependence of the pressure was considered small. In other words,
equations (13) and (15) are applicable even if there is a strong poloidal modulation of p,, for
example, due to non-central intensive heating [10, 11].
6. Discussion. The effect of the pressure anisotropy on the MHD equilibrium, especially on
the position of the magnetic axis, has attracted attention in connection with experiments on
the Large Helical Device (LHD) [4]. Our analytical treatment confirms the results of

numerical calculations [4]. In particular, we have shown that A is determined by (P, + P'q)

even in the presence of a significant modulation of p, . This explains stronger correlation of



39" EPS Conference & 16" Int. Congress on Plasma Physics P5.029

the magnetic axis shift with B, ~(p,+ p,) than with g ~(p,+2p,) found in numerical

calculations [4, 10]. The demonstrated applicability of equation (13) [6] and (15) [8] for a
plasma with strong poloidal modulation of p, can also explain the result of [4] that the

pressure difference from its average on the magnetic surface does not affect the Shafranov
shift (Figs. 3-5 in [4]). It is known [9, 10] that, in conventional tokamaks and stellarators, the

poloidal variation of p, must be small irrespective of modulation of p, . Therefore, at small
p, or p,>p, the variation in pressure on the magnetic surface should not significantly

affect the displacement of the magnetic axis, even if the next harmonics with cos26, cos36
etc. are taken into account as in [12], which also explains the results of [4].
Our conclusion about the applicability of equation (13) [6] in case of strong poloidal

modulation of p, is also consistent with calculations in [11], where the simulations of the

min

anisotropic plasma equilibrium in the JET tokamak with p™ /p!™ >6 on a magnetic

surface (Fig 1 in [11]) have shown that A does not depend on p, /p, at fixed &~ pj, + P'g-

Therefore, it can be difficult to detect the poloidal asymmetry of p, by magnetic diagnostics.
There is a great difference between the equilibria with p, >>p, and p, << p, . In the

latter case, the most interesting and different from the studied earlier weak-anisotropy case

[6, 8] is the equilibrium with strong poloidal modulation of p,. This is practically

unexplored situation, with only known analytical approach to the problem in [12]. Here we
applied a different technique and used less restrictive assumptions than in [12].
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