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Introduction

In most conventional transport simulations of tokamak plasmas, transport in the core region is

usually described as a one-dimensional problem by flux-surface average, since transport along a

field line is very fast. On the other hand, transport in the peripheral SOL-divertor region is usu-

ally described as a two-dimensional problem with simplified transport models and plasma flow,

since variation along the field line is considerable. For integrated modeling of both core and

peripheral plasmas, however, a two-dimensional description of transport phenomena over the

entire tokamak is desirable and is becoming feasible owing to recent progress in computational

performance. Such two-dimensional transport modeling will make a more accurate evaluation

of the confinement property including the pedestal region possible. In this study, we formu-

late a set of two-dimensional transport equations including the neoclassical viscous force [1] in

the magnetic flux coordinates necessary for developing a two-dimensional transport simulation

code TASK/T2.

Coordinate systems and assumptions
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Figure 1: Coodinate systems

We employ magnetic flux coodinate system (MFCS),

(ξ M
1,ξ

M
2,ξ

M
3) = (ρ ,χ ,ζ ) and vM

i ≡~v ·∇ξ M
i , to express spatial

variations of quantities in MHD equilibrium and neoclas-

sical tranport coordinate system (NTCS), (~eN
1 ,~eN

2 ,~eN
3 ) =

(∇ρ,~B/B,R2∇ζ ) and vN
i ≡~v ·~eN

i , to express components

of vector quantities for the compatibility with the neoclas-

sical transport theory [1] as shown in Figure 1.

In this study the following five assumptions are made:

1) toroidal axisymmetry, 2) quantities related to MHD

equilibrium depend only on the flux label ρ , 3) phenom-

ena at the Alfvén velocity are much faster than diffusion

of the magnetic field and transport phenomena, 4) force balance in the radial direction in the

transport time scale, 5) weak time dependence of the basis vectors.
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Derivation of the transport equations

We derive the two-dimensional transport model from fluid equations which consist of equa-

tion of continuity, equation of motion and equation of energy transport.

∂na

∂ t
+∇ · (na~ua) = Sna (1)

∂
∂ t

(mana~ua)+∇ · (mana~ua~ua) =−∇pa−∇ ·↔π a + eana

(
~E +~ua×~B

)
+~Fa +~Sma (2)

∂
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(
3
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)
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(
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5
2

pa~ua +
↔
π a ·~ua

)
=
(

∇ ·↔π a

)
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1
2

mau2
aSna

(3)

where a denotes particle species, na is the density of particle, ~ua is the flow velocity, Sna is the

source of particle, ma is the mass, pa is the isotropic pressure,
↔
π a is the anisotropic pressure

tensor, ea is the electric charge, ~E is the electric field, ~B is the magnetic field, ~Fa is the friction

force, ~Sma is the source of momentum, ~qa is the heat flux, Qa is the energy exchange term, and

SEa is the source of energy. In this study, we employ the neoclassical viscosity tensor [1] as the

the anisotropic pressure tensor

↔
πa = πneo

a

(
~eN

2~e
N
2 −

1
3
↔
I
)

, πneo
a = pa‖− pa⊥ (4)

where πneo
a is the neoclassial parallel viscosity coefficient.

The transport model consists of the equation of particle density, momentum and internal

energy for electrons and ions. The equation for particle density is expressed as

∂na

∂ t
+

2

∑
i=1

3

∑
j=1

1√
g

∂
∂ξ M

i

(√
gT MN

i j nauN
a j
)

= Sna (5)

where
√

g is the jacobian of MFCS and T MN
i j is the transform matrix from NTCS to MFCS.

Taking the scalar product of Eq.(2) with ~eN
1 with the fourth assumption, we obtain the force

balance equation in the radial direction

0 =−
2
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g1i ∂ pa

∂ξ M
i

+
2

∑
i=1

1
3

g1i ∂πneo
a
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i
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a κN
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2

∑
i=1
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∂φ
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i

+
eaBI
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a2−
eaB2

ψ ′ nau
ξ N

3
a +FN

a1 +SN
ma1 (6)

where gi j is the contravariant metric tensor of MFCS, ~κ is the curvature vector of the magnetic

field, φ is the electrostatic potential, I is the toroidal current, and ψ is the poloidal flux, (ψ ′ ≡
dψ/dξ M

1). Taking the scalar products of Eq.(2) with~eN
2 , we obtain the equation for momentum
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in the parallel direction
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where Cmomentum
i j is the geometric coefficient. In the derivation of Eq.(7) we used the following

relation [2] for an arbitrary symmetric tensor
↔
T S.

~eN
3 ·
(

∇ · ↔T S

)
= ∇ ·

(
~eN

3 ·
↔
T S

)
(8)

Taking the scalar product of Eq.(2) with ~eN
3 , we obtain the equation for momentum in the

toroidal direction
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In the derivation of the equation for internal energy, we use following relation [3] derived from

the conservation of energy through collisions among different particle species.

~ue ·∇pe +
(

∇ ·↔π e

)
·~ue +Qe =−∑

a6=e

[
~ua ·∇pa +

(
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)
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]
+~j ·~E (10)

Substituting this relation into Eq.(3), we obtain equation for internal energy for electron and

ions as follows
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In the derivation of Eq.(11) and (12), we employed Braginskii’s heat flux ~qa [4] in MFCS and

the heat exchange term Qa as follows.

~qa =−naχa‖∇‖Ta−naχa∧~e‖×∇Ta−naχa⊥∇⊥Ta =−na
↔
χ a ·∇Ta (13)

Qa = ∑
b 6=a

Qab, Qab ≡
3
2

na
Tb−Ta

τab
(14)

To close our transport model, appropriate two-dimensional modelings on the friction force ~Fa

and the neoclassical viscosity coefficient πneo
a are needed. We employ Braginskii’s friction force

[4] and neoclassical viscosity coefficient in high collisionality region in this formulation.

Conclusion

A set of equations required for two-dimensional transport modeling for tokamak plasmas

has been derived for integrated analysis of core and peripheral plasmas. Transport equations

have been derived with the neoclassical viscosity in MFCS and reduced to two-dimensional by

toroidal axisymmetry. By combining these transport equations with the set of electromagnetic

equations which consist of the equation for static electric field, the magnetic diffusion equation

and Grad-Shafranov equation, a self-consistent two-dimensional transport analysis including

the field evolution and a more accurate evaluation of the confinement property will be available.
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