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Introduction

In most conventional transport simulations of tokamak plasmas, transport in the core region is
usually described as a one-dimensional problem by flux-surface average, since transport along a
field line is very fast. On the other hand, transport in the peripheral SOL-divertor region is usu-
ally described as a two-dimensional problem with simplified transport models and plasma flow,
since variation along the field line is considerable. For integrated modeling of both core and
peripheral plasmas, however, a two-dimensional description of transport phenomena over the
entire tokamak is desirable and is becoming feasible owing to recent progress in computational
performance. Such two-dimensional transport modeling will make a more accurate evaluation
of the confinement property including the pedestal region possible. In this study, we formu-
late a set of two-dimensional transport equations including the neoclassical viscous force [1] in
the magnetic flux coordinates necessary for developing a two-dimensional transport simulation

code TASK/T2.

Coordinate systems and assumptions

We employ magnetic flux coodinate system (MFCS),
(EMEMEM = (p,x, &) and M =7 VEN, to express spatial 1 e

variations of quantities in MHD equilibrium and neoclas-

sical tranport coordinate system (NTCS), (&), &), &)

3 2 N_ = 2N
(Vp,B/B,R°V{) and v;) = V&, to express components

of vector quantities for the compatibility with the neoclas-

sical transport theory [1] as shown in Figure 1.

In this study the following five assumptions are made:
1) toroidal axisymmetry, 2) quantities related to MHD
equilibrium depend only on the flux label p, 3) phenom- Figure 1: Coodinate systems
ena at the Alfvén velocity are much faster than diffusion
of the magnetic field and transport phenomena, 4) force balance in the radial direction in the

transport time scale, 5) weak time dependence of the basis vectors.
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Derivation of the transport equations
We derive the two-dimensional transport model from fluid equations which consist of equa-

tion of continuity, equation of motion and equation of energy transport.
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where a denotes particle species, n, is the density of particle, i, is the flow velocity, S, is the
source of particle, m, is the mass, p, is the isotropic pressure, ;a is the anisotropic pressure
tensor, e, is the electric charge, E is the electric field, B is the magnetic field, 17}, 1s the friction
force, §ma is the source of momentum, ¢, is the heat flux, Q, is the energy exchange term, and
SEq 18 the source of energy. In this study, we employ the neoclassical viscosity tensor [1] as the

the anisotropic pressure tensor
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where 7, i

is the neoclassial parallel viscosity coefficient.
The transport model consists of the equation of particle density, momentum and internal

energy for electrons and ions. The equation for particle density is expressed as

on 231 9
LYY — = (VBT ad) = S, 5
= ;}_Zl 7 9 (VBT hattaj) = Sn, (5)

where /g is the jacobian of MFCS and .7; JMN is the transform matrix from NTCS to MFCS.
Taking the scalar product of Eq.(2) with 511\1 with the fourth assumption, we obtain the force

balance equation in the radial direction
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where g/ is the contravariant metric tensor of MFCS, ¥ is the curvature vector of the magnetic
field, ¢ is the electrostatic potential, I is the toroidal current, and  is the poloidal flux, (y/ =
dy /dE}). Taking the scalar products of Eq.(2) with & 62 , we obtain the equation for momentum
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in the parallel direction
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where Cm"mentum is the geometric coefficient. In the derivation of Eq.(7) we used the following

relation [2] for an arbitrary symmetric tensor T s-
z?-(V-TS) :V-<E3N-TS> )
Taking the scalar product of Eq.(2) with € e3 , we obtain the equation for momentum in the

toroidal direction
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In the derivation of the equation for internal energy, we use following relation [3] derived from
the conservation of energy through collisions among different particle species.
e Vpert (V- 7o) et Qe == X |la Vot (V- 7o) -lla+ Q| +J-E (10)
ate
Substituting this relation into Eq.(3), we obtain equation for internal energy for electron and

ions as follows
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In the derivation of Eq.(11) and (12), we employed Braginskii’s heat flux g, [4] in MFCS and
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the heat exchange term Q, as follows.
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To close our transport model, appropriate two-dimensional modelings on the friction force E,

neo

and the neoclassical viscosity coefficient 7, are needed. We employ Braginskii’s friction force

[4] and neoclassical viscosity coefficient in high collisionality region in this formulation.
Conclusion

A set of equations required for two-dimensional transport modeling for tokamak plasmas
has been derived for integrated analysis of core and peripheral plasmas. Transport equations
have been derived with the neoclassical viscosity in MFCS and reduced to two-dimensional by
toroidal axisymmetry. By combining these transport equations with the set of electromagnetic
equations which consist of the equation for static electric field, the magnetic diffusion equation
and Grad-Shafranov equation, a self-consistent two-dimensional transport analysis including
the field evolution and a more accurate evaluation of the confinement property will be available.
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