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Introduction

It has been established in a number of fusion devices that sheared flows play a role in the

transitions to improved confinement regimes as the L-H transition and the internal transport

barriers (ITBs) (on ITBs formation in the JET and DIII-D devises see for example Refs. [1] and

[2]). Equilibria with sheared flows which can be employed as starting points of stability and

transport studies have been constructed on the basis of generalized Grad-Shafranov equations

(GGSEs). In particular, linear analytical solutions to GGSEs are usually obtained by the method

of separation of veriables.
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Figure 1: ITER-like equilibrium of the lin-

earized GGSE (3) for P2 = Φ2 = 0 (Eqs.

(4) and (5)). The bounding flux surface

shown in red corresponds to ub = 2.18

Wb, with ua = 0 for the magnetic axis. The

divertor X-point is located at (ρX ,ζX) =

(0.81,−0.63).

A novel non-separable class of solutions describ-

ing up-down symmetric configurations with flows

parallel to the magnetic field was found in Ref. [3]

and was extended to include asymmetric configura-

tions [4]. Since both velocity, components toroidal

and poloidal, play a significant role in the transition

to the improved confinement regimes, in the present

contribution we will construct several classes of so-

lutions for flows of arbitrary direction and exam-

ine their proprties in connection with the ITB phe-

nomenology. Incompressible flows will be consid-

ered implying uniform density on magnetic sur-

faces, because the Alfvén Mach numbers (defined

below) in large tokamks are low, i.e. on the order of

10−2. The classes of analytic equilibria to be con-

structed include both separable and non separable

solutions. They give nested magnetic surfaces, and

their characteristics such as elongation and triangu-

larity are in considerable accordance with actual geometrical and physical data that enter e.g.

the ITER project. Some of the solutions are up-down asymmetric with a divertor X-point. Un-
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fortunately, the linear stability of the solutions cannot be studied, unlike in Refs. [3] and [4] for

parallel flows, due to the absence of a concise condition for equilibria with non-parallel flows.

The results of the present study were published recently in Ref. [5]. Here we will present an

extended summary.

Equilibria with non parallel flow

The stationary MHD equilibrium of a magnetically confined plasma with non parallel incom-

pressible flow is governed by the GGSE [6, 7]

∆∗u+
1
2

d
du

(
X2

1−M2
p

)
+ µ0R2 dPs(u)

du
+

R4

2
d
du

[
ρ̃(Φ

′
(u))2

]
= 0 (1)

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

u/ua

q(
u)

Figure 2: Safety factor for a separable so-

lution of (3) with P2 = Φ2 = 0 and X0 =

90, corresponding to a toroidal magnetic

field of the order of Bϕ ∼ (X0/Ra) = 15

T. Note that the form of the safety factor

is due to the fact that the outer bounding

surface corresponds to u = ub = 0.

together with the Bernoulli equation for the pres-

sure

P = Ps(u)− ρ̃

[
v2

2
−R2

(
dΦ
du

)2
]

. (2)

Here, the function u(R,z) labels the magnetic sur-

faces (with z,R,ϕ cylindrical coordinates), Ps(u) is

the static (no flow) pressure, X(u) is related to the

toroidal magnetic field, Φ(u) is the electrostatic po-

tential related to the non parallel component of flow,

ρ̃ is the density, Mp(u) is the Mach function of

the poloidal velocity with respect to the poloidal

Alfvén velocity and v is the velocity modulus. Ow-

ing to the flow, P in general is not a surface quan-

tity. Once the free-function terms X2/(1−M2
p), Ps

and d(ρ̃(Φ′
(u))2)/du are specified, Eq. (1) can be

solved under appropriate boundary conditions. We

have chosen the free functions as X2(u)/(1−M2
p) =

X2
0 + 2X1u + X2u2, µ0Ps(u) = P0 − P1u− P2u2/2, d

[
ρ̃(Φ′(u))2]/du = 2Φ1 + 2Φ2u (where

P0, P1, P2, X0, X1, X2,Φ1,Φ2 are free parameters the values of which will be assigned for

specific equilibria) and introduce the dimensionless variables ρ := (R/R0), ζ := (z/R0) where

R0 is the position of the geometric center. Then Eq. (1) assumes the form

1
R2

0
[uρρ −

1
ρ

uρ +uζ ζ ]+ (X1 +X2u)−R2
0ρ2(P1 +P2u)+R4

0ρ4(Φ1 +Φ2u) = 0. (3)

We have constructed four classes of solutions to (3). It is emphasized that all the solutions hold

for arbitrary densities and Mach functions. To construct completely particular equilibria we have
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made several choices of ρ̃(u) and M2(u), e.g. ρ̃ = ρ̃a
(
1− (u/ub)2)λ

, M2
p = M2

a [1− (u/ub)
n]

or M2
p = C(u−ub)n(ua−u)m with C = M2

a

[
m(ua−ub)

m+n

]−m [n(ua−ub)
m+n

]−n
. Here, the former M2

p is

peaked on- while the latter is peaked off-axis in connection with respective auxiliary heating

of tokamaks; ub refers to the plasma boundary, the free parameters ρ̃a and M2
a correspond to

the maximum values of ρ̃ and M2
p and m and n are related to the flow shear. One class of the

solutions corresponding to P2 = Φ2 = 0 is written as u = u1 +u2, where (g := X2R2
0)

u1 =
P1R2

0
X2

ρ2− X1

X2
+ c1sin[

√
g(ρ2 +ζ 2)1/2]++c2cos[

√
g(ρ2 +ζ 2)1/2]+ c3cos[

√
gζ ]

+c4ρ2cos[
√

gζ ]+ c5sin[
√

gζ ]+ c6ρ2sin[
√

gζ ]+ c7ρJ1(
√

gρ)+ c8ρY1(
√

gρ), (4)

is the parallel-flow contribution (i.e. solution of Eq. (3) with Φ1 = Φ2 = P2 = 0), and
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πR6
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is a solution of uρρ − (1/ρ)uρ +gu+Φ1R6
0ρ4 = 0. Here, Jn(x), Yn(x) are the Bessel functions

of the first and second kind respectively and of order n;

G1 = G
(
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,−1}};

√
gρ
2

,
1
2

)

is the Meijer G-function [8]. An ITER-like configuartion in connection with this solution is

given in Fig. 1. The elongation of this configuration is κ = 1.64 and its triangularity is δ =

0.513. The other three classes of solutions are given in Ref. [5].
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Figure 3: Dependence of the edge (bound-

ary) safety factor qb on the parameter Φ1,

for qa = 1, for the non separable solution

of (3) (Eqs. (4) and (5)).

On the basis of the solutions constructed we

have examined certain equilibrium characteristics

by means of the safety factor, electric field, toroidal

velocity, Shafranov shift, current density and pres-

sure. The most significant result is the following:

The safety factor profile can be either monoton-

ically increasing from the magnetic axis to the

plasma boundary or can have a minimum associated

with a slight reversal of the magnetic shear (Fig. 2).

In all cases for a given value of the safety factor on

magnetic axis (qa ≥ 1 so that the Kruscal-Shafranov

limit is satisfied), the edge safety factor decreases

as the magnitude of the electric field increases in

connection with the parameters Φ1 and Φ2 as it is

shown in Fig. 3. On the other side, the electric field

results in an increase of the toroidal velocity vϕ and its shear as can be seen in Fig. 4.
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Figure 4: Toroidal velocity for the equi-

librium of Fig. 1, with Φ1 =−1.50, Φ1 =

0.0, λ = 0.5 and ρa = 1.0.

These characteristics indicating a stabilizing ef-

fect of the electric field are qualitatively consis-

tent with a past equilibrium study in cylindrical ge-

ometry [9] according to which the reversed mag-

netic shear and sheared poloidal and toroidal flow

may act synergetically in the formation of ITBs. A

synergism of reversed magnetic shear and sheared

poloidal and toroidal rotation, consisting in that on

the one hand the reversed magnetic shear plays a

role in triggering the ITBs development while on

the other hand the sheared rotation has an impact

on the subsequent growth and allows the formation

of strong ITBs, was observed in JET [1] and and

DII-D [2].
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