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Analytic tokamak equilibria with non-field aligned flows
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Introduction

It has been established in a number of fusion devices that sheared flows play a role in the

transitions to improved confinement regimes as the L-H transition and the internal transport

barriers (ITBs) (on ITBs formation in the JET and DIII-D devises see for example Refs. [1] and

[2]). Equilibria with sheared flows which can be employed as starting points of stability and

transport studies have been constructed on the basis of generalized Grad-Shafranov equations

(GGSES). In particular, linear analytical solutions to GGSEs are usually obtained by the method

of separation of veriables.

A novel non-separable class of solutions describ-
ing up-down symmetric configurations with flows
parallel to the magnetic field was found in Ref. [3]
and was extended to include asymmetric configura-
tions [4]. Since both velocity, components toroidal
and poloidal, play a significant role in the transition
to the improved confinement regimes, in the present
contribution we will construct several classes of so-
lutions for flows of arbitrary direction and exam-
ine their proprties in connection with the ITB phe-
nomenology. Incompressible flows will be consid-
ered implying uniform density on magnetic sur-
faces, because the Alfvén Mach numbers (defined
below) in large tokamks are low, i.e. on the order of
10~2. The classes of analytic equilibria to be con-
structed include both separable and non separable
solutions. They give nested magnetic surfaces, and

their characteristics such as elongation and triangu-
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Figure 1: ITER-like equilibrium of the lin-
earized GGSE (3) for P, = &, =0 (Egs.
(4) and (5)). The bounding flux surface
shown in red corresponds to u, = 2.18
Wb, with u, = 0 for the magnetic axis. The

divertor X-point is located at (px,Cx) =
(0.81,—0.63).

larity are in considerable accordance with actual geometrical and physical data that enter e.g.

the ITER project. Some of the solutions are up-down asymmetric with a divertor X-point. Un-
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fortunately, the linear stability of the solutions cannot be studied, unlike in Refs. [3] and [4] for
parallel flows, due to the absence of a concise condition for equilibria with non-parallel flows.
The results of the present study were published recently in Ref. [5]. Here we will present an

extended summary.

Equilibria with non parallel flow

The stationary MHD equilibrium of a magnetically confined plasma with non parallel incom-

pressible flow is governed by the GGSE [6, 7]
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together with the Bernoulli equation for the pres-

sure 7

2 dd\?
P=h)=p [5‘R2 ()

Here, the function u(R,z) labels the magnetic sur-

)

faces (with z,R, ¢ cylindrical coordinates), Ps(u) is
the static (no flow) pressure, X (u) is related to the

toroidal magnetic field, ®(u) is the electrostatic po-

tential related to the non parallel component of flow, Y 0z 04 0s 08

u/ua

p is the density, M,(u) is the Mach function of

the poloidal velocity with respect to the poloidal Figure 2: Safety factor for a separable so-
Alfvén velocity and v is the velocity modulus. OW-  jysion of (3) with Py = @, = 0 and Xy =
ing to the flow, P in general is not a surface quan- g corresponding to a toroidal magnetic
tity. Once the free-function terms X2 /(1 — Mlz,), Py field of the order of By ~ (Xo/Rq) = 15
and d(ﬁ(q)l(”))z)/d” are specified, Eq. (1) canbe 7. Nose that the form of the safety factor

solved under appropriate boundary conditions. We s gue 1o the fact that the outer bounding

have chosen the free functions as X2 (u) /(1 —MI%) = surface corresponds to u = uy, = 0.
X3+ 2Xqu + Xou?, poPs(u) = Py — Piu— Pou? /2, d [p(D/(u))?] /du = 2@ + 2dou (where
Py, P, P», Xo, X1, Xo,P1,P, are free parameters the values of which will be assigned for
specific equilibria) and introduce the dimensionless variables p := (R/Ry), § := (z/Ry) where
Ry is the position of the geometric center. Then Eq. (1) assumes the form

1 1

o lop = S ttp Fuz] + (X1 +Xo1) = Rp? (P -+ Pou) + Rop* (@1 + @) = 0. (3)

0

We have constructed four classes of solutions to (3). It is emphasized that all the solutions hold

for arbitrary densities and Mach functions. To construct completely particular equilibria we have
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made several choices of p(u) and M*(u), e.g. p = pa (1 — (u/ub)z);L : MI% = M2 (1 — (u/up)"]

or M127 = C(u—up)"(ug — u)™ with C = M? |:m(”a—”b)

m+n

- n(ua—”h) - 2
. Here, the former Mp 18

m+n

peaked on- while the latter is peaked off-axis in connection with respective auxiliary heating

of tokamaks; u;, refers to the plasma boundary, the free parameters j, and M2 correspond to

the maximum values of p and MIZ7 and m and n are related to the flow shear. One class of the

solutions corresponding to P, = &, = 0 is written as u = u; + up, where (g := XZR%)
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+cap’eos| /88 + cssin[\/gC] + cop>sin[/8C] + c7pJ1(\/8p) + cspYi(/2P), (4)

is the parallel-flow contribution (i.e. solution of Eq. (3) with & = &, = P, =0), and
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is a solution of up, — (1/p)up + gu+ P R$p* = 0. Here, J,,(x), ¥, (x) are the Bessel functions

of the first and second kind respectively and of order #;
1= — 11 —, = i1} =
G G({{z},{ MG b ,2)

is the Meijer G-function [8]. An ITER-like configuartion in connection with this solution is

given in Fig. 1. The elongation of this configuration is k¥ = 1.64 and its triangularity is 0 =

0.513. The other three classes of solutions are given in Ref. [5].

On the basis of the solutions constructed we
have examined certain equilibrium characteristics
by means of the safety factor, electric field, toroidal
velocity, Shafranov shift, current density and pres-
sure. The most significant result is the following:
The safety factor profile can be either monoton-
ically increasing from the magnetic axis to the
plasma boundary or can have a minimum associated
with a slight reversal of the magnetic shear (Fig. 2).
In all cases for a given value of the safety factor on
magnetic axis (g, > 1 so that the Kruscal-Shafranov
limit is satisfied), the edge safety factor decreases
as the magnitude of the electric field increases in
connection with the parameters ®; and ®, as it is

shown in Fig. 3. On the other side, the electric field

Figure 3: Dependence of the edge (bound-
ary) safety factor qp on the parameter ®1,

for g, = 1, for the non separable solution

of (3) (Egs. (4) and (5)).

results in an increase of the toroidal velocity vy and its shear as can be seen in Fig. 4.
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These characteristics indicating a stabilizing ef-
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fect of the electric field are qualitatively consis-

tent with a past equilibrium study in cylindrical ge-

ometry [9] according to which the reversed mag-
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netic shear and sheared poloidal and toroidal flow
may act synergetically in the formation of ITBs. A

synergism of reversed magnetic shear and sheared

poloidal and toroidal rotation, consisting in that on

the one hand the reversed magnetic shear plays a
role in triggering the ITBs development while on

) ) Figure 4: Toroidal velocity for the equi-

the other hand the sheared rotation has an impact
) librium of Fig. 1, with &1 = —1.50, ®| =

on the subsequent growth and allows the formation

) 0.0,A =0.5and p, = 1.0.
of strong ITBs, was observed in JET [1] and and

DIL-D [2].
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