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Introduction Runaway electron distributions with strong velocity space anisotropy

may destabilize high-frequency electromagnetic waves through a resonant interaction.

Such an interaction was studied previously in a case when the electric field is much higher

than the critical field for runaway acceleration and secondary runaway generation domi-

nates [1-3]. However, it was recently pointed out that even in large tokamak disruptions

the electric field on axis is only slightly higher than the critical field [4]. Therefore, in

this work we investigate the lowest relevant limit, the near-critical case. This provides

us with insight to the electric field dependence of the results, and opens the way toward

calculations with arbitrary runaway distributions.

Distribution function In the near-critical case the electric field is low and primary

generation is the dominant method of runaway generation. Thus, in the present work, a

distribution function relevant for this case will be used [5], with α = E/Ec
>∼1, where E is

the electric field, Ec is the critical field. The distribution, obtained by matching solutions

of the Fokker-Planck equation in five different regions of momentum space is

fr(p∥,p⊥) =
A

p
(Cs−2)/(α−1)
∥

exp
(
− (α+1)p2

⊥
2(1+Z)p∥

)
1F1

(
1− Cs

α+1
,1;

(α+1)p2
⊥

2(1+Z)p∥

)
, (1)

where Cs = α− (1+Z)
4 (α− 2)

√
α

α−1 , Z is the effective ion charge, 1F1 is the confluent

hypergeometric (Kummer) function and A is a normalization constant. The distribution

is positive on all of the momentum space only if the first argument of 1F1 is positive:

Cs < α+1. Furthermore, the condition fr → 0 for p∥→∞ requires that Cs > 2. These two

conditions define a region in the α−Z space where the distribution is valid (see Fig. 1a).

On Fig. 1b, the normalized distribution is plotted for α = 1.3, Z = 1, where ∥/⊥ indices

denote parallel/perpendicular directions to the static magnetic field. By comparing this

distribution to the one relevant in high electric fields [1-3] (Fig. 1c), it can be seen that the

anisotropy is much weaker in the near-critical distribution. Also, because of the primary

generation of runaways, the tail of the steady-state distribution (1) is not exponentially

decaying but slower.
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Figure 1: (a) Cs plotted with respect to α and Z, fr is valid in between the black lines. (b,c) Nor-

malized runaway distribution as function of the momentum normalized to mec in the near-critical

case, (b) for α = E/Ec = 1.3 and Z = 1 effective ion charge, (c) compared to the distribution

valid in high electric fields for α = 800, Z = 1 and lnΛ = 18.

Wave dispersion When deriving the dispersion of the high-frequency electromagnetic

waves we used the cold plasma approximation, which has proved to be valid for tempera-

tures as high as 20 keV. With the electromagnetic approximation, ϵe+i
33 ≫ k∥k⊥c2/ω2, the

dispersion yields (ϵ11−k2
∥c

2/ω2)(ϵ22−k2c2/ω2)+ϵ212 = 0, where ω is the wave frequency, k

is the wave number and ϵ is the dielectric tensor of the plasma, consisting of the suscepti-

bilities of the different plasma species: ϵ = 1+χi +χe +χr, the indices i, e and r denoting

the ion, thermal electron and runaway population.

Figure 2: Comparison of the

electron- and magnetosonic-

whistler (ω/ωce) for density

ne = ni = 5 · 1019 m−3, mag-

netic field B = 2 T.

Two different approximations are used, one where ω ≫
ωce

√
me/mi, for which the dielectric tensor is ϵe+i

11 =

1 − ω2
pe/(ω

2 − ω2
ce), ϵe+i

22 = 1 − ω2
pe/(ω

2 − ω2
ce), ϵe+i

12 =

−iω2
peωce/[ω(ω2−ω2

ce)], where ωpe is the electron plasma-

and ωce is the electron cyclotron frequency. This dispersion

defines three different electromagnetic waves, of which we

used the lowest frequency branch and named it ‘electron-

whistler wave’ because for certain limits it overlaps with

the whistler wave defined in Ref. [6]. The other approxima-

tion is the magnetosonic-whistler wave of Refs. [1-3] with

the difference of keeping the ones from the dyadic unit in

the dielectric tensor elements (valid for ωci ≪ ω ≪ ωce):

ϵe+i
11 = 1−ω2

pi/ω
2 +ω2

pe/ω
2
ce, ϵe+i

22 = 1−ω2
pi/ω

2 +ω2
pi/ωciωce,

ϵe+i
12 = iω2

pi/ωciω, where ωpi is the ion plasma- and ωci is the

ion cyclotron frequency. The two different approximations are plotted on Fig. 2, where

cosθ = k∥/k. They overlap in the region around k ∼ 5 cm−1, otherwise the magnetosonic-
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whistler wave is valid for lower wave numbers while the electron-whistler is valid for high

wave numbers.

Growth rate In the presence of runaway electrons, the linear growth rate of the waves

can be calculated by perturbing the dispersion with the runaway susceptibility. This results

in an additional δω term in the wave frequency, the imaginary part of which is the linear

growth rate γi. The growth rate can thus be calculated from the unperturbed dispersion

and the runaway susceptibility. The resonance condition giving the momentum of the

runaway electrons resonant with the wave is p∥k∥c+nωce−ωγ = 0, where γ =
√

1+p2 is

the relativistic factor and n is the order of resonance. In previous studies, the relativistic

factor was approximated as γ≈ |p∥|, and this led to the so-called ultrarelativistic resonance

condition. However, this approximation does not hold if the accelerating electric field is

lower. Thus, in this work the general form of the resonance condition was used, obtained

by substituting the full expression for γ into the resonance condition.

Figure 3: (a,b) Growth rates (γi/ωce) of (a) the electron-whistler, (b) the magnetosonic-whistler

wave for resonances n = 0, −1, runaway density nr = 3 ·1017 m−3 and for ne = ni = 5 ·1019 m−3,

B = 2 T. The black line is ω = ωce/45, the white dots correspond to the runaway energy of

2.6 MeV. (c) Stability diagram for the electron-whistler wave for runaway beam radius Lr = 0.1 m

(dashed) and 0.2 m (solid).

The growth rate of the electron- and magnetosonic-whistler waves are presented on

Fig. 3ab. They are positive, with a maximum in the magnetosonic-whistler region, around

km ∼ 2 cm−1 and θm ∼ π/2 for the parameters given in the figure caption. Neverthe-

less, the wave with these parameters is the most unstable wave only if the runaways

reach the corresponding resonant energy of 10 MeV. Reaching this energy is unlikely in a

near-critical field, so the parameters of the most unstable wave depend on the maximum

runaway energy. The k(θ) curve corresponding to the energy of 2.6 MeV is plotted on Fig.

3a, and the growth rate is only valid for wave numbers higher than this line, i.e. in the

region which corresponds to lower runaway energies. From the figure we can deduce that
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the most unstable wave will be the one destabilized by the maximum energy runaways,

an electron-whistler wave of oblique propagation.

The dependence of the parameters of the most unstable wave on the maximum runaway

energy was investigated, and we came to the conclusion, that for higher resonant energy

the wave number of the most unstable wave decreases while its propagation angle increases,

resulting in a decreasing wave frequency, see Fig. 4ab.

Figure 4: Parameters of the most unstable wave as a function of the resonant energy (a) wave

number and propagation angle, (b) wave frequency.

The growth rate of the most unstable electron-whistler wave for 2.6 MeV maximum

energy was compared to the collisional and convective damping rates for Te = 20 eV post-

disruption electron temperature, and a stability threshold was determined. If the runaway

density is higher than the critical values plotted on Fig. 3c, the wave is destabilized. The

density threshold is higher for a narrower runaway beam, as well as for a higher magnetic

field, in the region of validity of our approximations, between 1−3 T.

Conclusions Our results show that the interaction between runaway electrons and elec-

tromagnetic waves is similar in the near-critical and high electric field case in the sense

that neither the runaway distributions nor the growth rates differ qualitatively. The gen-

eralizations presented here are necessary in order to expand the validity of the calculations

for lower electric fields. They are also essential for the numerical handling of the problem,

needed when proceeding to the evaluation of arbitrary distribution functions.
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