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During the last decade it has been shown theoretically, numerically and experimentally that 

current driven, resistive tearing modes can be significantly suppressed in the reversed-field 

pinch (RFP). In these advanced scenarios, the confinement time can be enhanced by a factor 

5-10. Pressure driven resistive instabilities (g-modes) still stand in the way, however, for high 

RFP confinement. Classical theory [1] shows that the unfavourable RFP curvature inevitably 

leads to unacceptably large linear growth rates even at high Lundquist numbers. Later theory 

[2] demonstrates, however, that the classical assumption of adiabatic plasma energy dynamics 

is inaccurate. The reason is that anomalously large experimental perpendicular heat 

conduction, together with strong parallel heat conduction, to a certain extent outbalance the 

pressure terms of the plasma energy equation. Resulting resistive length scales appear to 

extend the resistive layer at the resonance to allow for fully stable, finite beta RFP 

configurations. In the present work we show theoretically that the latter result is limited to 

low beta only and that it scales unfavourably with Lundquist number. Numerical solution, 

using a novel time-spectral method [3] of the linearised resistive MHD initial-value equations 

including heat conduction, ohmic heating and resistivity, supports the analytical results.  

Resistive g-mode dispersion relation from classical adiabatic energy equation 

In classical linear analysis of resistive instabilities in circularly cylindrical plasmas, the 

tearing layer near the resonance region plays a central role. Whereas ideal MHD is 

approximately valid outside this region, resistivity provides an important contribution in the 

resistive layer. Thermal conduction effects are, however, assumed to be negligible 

everywhere. Assuming perturbations ! exp[i(m! + kz)+"t] , resonances occur at radial 

positions r = rs  which satisfy q = rB0z / B0! = !m / k , in which relation the safety factor 

q = q(r) . Furthermore, B0! = B0! (r)  and B0z = B0z (r)  denote azimuthal and axial equilibrium 

magnetic fields. At the resonance radius, the helicity of the perturbation matches that of the 

equilibrium magnetic field to inhibit plasma stability through field line bending. By 
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calculating the difference of the logarithmic derivative of the radial magnetic field 

perturbation outside and inside the resistive layer, using both the exterior ideal MHD model 

(with result denoted !" ) and the interior resistive MHD model, a dispersion relation, 

providing the growth rate for the perturbation with mode numbers (m,k), is obtained [1]: 

 

Lr !" = KQ5/4 (1# !D
4Q3/2 )                                                       (1) 

Here K = 2!!( 34 ) /!( 14 ) , with !  being the gamma function, and Lr = S0
!1/3(q / (kB0z "q ))

1/3 . 

Pressure effects enter through the normalized Suydam pressure gradient, for RFP equilibria 

approximately given by D = !2p0"(q / "q )2 / (rB0z
2 )  in which relation p0 = p0 (r)  denotes 

equilibrium pressure. S0  is the Lundquist number. Normalized growth rates !  are obtained 

from Q =!S0
1/3(q / (kB0z !q ))

2/3 . Variables are normalized to plasma radius a , Alfvén time 

! A = a / vA , magnetic on-axis field Baxis , and plasma on-axis pressure paxis = Baxis
2 /µ0 = !axisvA

2  

so that the normalized, uniform density and resistivity become ! =1  and ! =1 , respectively. 

Dimensional resistivity is µ
0
a
2
/ (S

0
!
A
) . All variables are evaluated at resonant point r = rs . 

 The computation of !"  is non-trivial for finite beta. Whereas for zero beta the 

expression for !"  has a singularity of type x!1 , with x = r ! rs  being the distance from the 

singular layer, the singularity is of type x!2  for finite equilibrium pressure. Numerical 

procedures for calculation of !"  for finite beta cases are given in [2,4]. In this analysis, a 

useful estimate of the resistive layer is ! = ["r2 / (S0 ( !F )2 )]1/4 , with F =mB0! + krB0z . 

Although the mode number m does not appear explicitly in Eq. (1) it is included in the 

computation of !" , and the dispersion relation is valid for all (m,k).  

 It may be shown [1] that for confined equilibria where D > 0 , Eq. (1) always predicts 

instability for the RFP, that is ! > 0 . At low poloidal plasma beta (< 0.05), Eq. (1) features 

tearing mode scaling ! ! S0
"3/5  and at higher beta, resistive g-mode scaling ! ! S0

"1/3  emerges, 

being in agreement with numerical results using the resistive MHD model for the entire 

plasma region [5]. It should be noted that Eq. (5) of Ref [2] is different from Eq.(1) for finite 

beta and appears to be erroneous; it does not feature resistive g-mode scaling. 

 The dispersion relation (1) is approximative, being a result of several assumptions 

regarding orderings and limits. The most important are: 1) linearity and absence of mode 

coupling, 2) low beta, 3) small compressibility, 4) low resistivity, 5) neglect of ohmic heating 

and heat conduction terms in the energy equation, 6) the expansion F = !F x  and 7) perturbed 

variables vary on a short spatial scale, comparable to the resistive layer width.   
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Resistive g-mode dispersion relation including heat conduction  

Including ohmic heating and heat conduction effects, the first order energy equation becomes 

!p1
!t

= "v1r p0# " $p0%·v1 +
$"1
S0

{2(!& j&0 j&1 +!|| j||0 j||1)+
" ||
B0
2 ["F

2p1 / r
2 + iFp0#B1r / r]+  

+
!!

B0
2 [F

2p1 / r
2 " iFp0#B1r / r]+ !![p1## + p1# / r " (m

2 / r2 + k2 )p1]+ !!
#p1#}                     (2) 

Here  !  denotes the ratio of specific heats. Braginskii [6] parallel heat conduction ! ||  may be 

used, but experimental perpendicular heat conduction !!  exceeds that of Ref [6] by more 

than an order of magnitude. Thus it is preferably deduced from the equilibrium relation 

(r!!p0´)´= "r("|| j||0
2 +"! j!0

2 ) . In Ref [2] a tearing order analysis, similar to that resulting in Eq. 

(1), is carried out assuming that Eq. (2) can be approximated by  
 

0 = ! ||
B0
2 [!F

2p1 / r
2 + iFp0"B1r / r]+ !#p1""                                                   (3) 

The result is the dispersion relation (with all variables evaluated at r = r
s
) 

rs !" = KQB
5/4 #

! 3/2rsD
2"x

                                                                (4) 

The modified resistive layer scale length is !" = [("!
/ "

||
)(B

0

2
/ (m

2
B
0#
2
))((rq) / "q )

2
]
1/4 . Growth 

rates !  are here obtained from QB = ! S0
3/5
(r
2
q / (kB0z !q ))

2/5 . Again this result is only valid in 

the low beta limit, and rests on the same approximations as those listed for the classical 

dispersion relation. Also, the solution of Eq. (3) for p
1
 depends on the questionable 

convergence of sums of Hermite polynomials.  

 The heat conduction modified dispersion relation (4) implies a possibility for resistive 

g-mode stable RFP equilibria [2]; any finite pressure equilibrium where D > 0  could avoid 

instability if !"  is sufficiently negative. The equation is delusive, however. First, marginal 

stability (Q = 0 ) for any given equilibrium (fixed !" ) requires that the Suydam parameter 

D! 0  as S
0
!" . Thus, for reactor relevant values of plasma beta and Lundquist numbers, 

heat conduction does not provide essential stabilisation. Proof: in our normalisation, !
||
! S

0

2   

and !
!
" S

0

0 , thus !" ! S
0

"1/2  and !" # $DS
0

1/2 . For fixed !" , the marginal beta value thus 

tends to zero as S
0
!" . An example: an equilibrium, stable below !p

= 0.05  for S
0
=10

4 , 

would be stable below !p
= 0.0005  for S

0
=10

8 . Second, equilibria marginally stable to 

tearing modes ( !" = 0 ) would obey the weak scaling ! ! S
0

"1/5 , practically a non-scaling 

which is not supported by neither resistive MHD simulations nor by experiments [7]. 
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Fully resistive computations using GWRM code 

To study the shortcomings of !"  theory, a code for solving the complete set of linearised 

resistive MHD equations in the entire plasma domain has been developed. The full energy 

equation (2) is solved. The code is based on a new Generalized Weighted Residual Method 

(GWRM), where also the time domain is treated spectrally, thus avoiding the limitations of 

time stepping methods [3]. The table below summarizes some of the results. We use a typical 

RFP equilibrium, and use the standard (µ(r), p(r) ) equilibrium formulation so that marginal 

tearing mode stability at zero beta is guaranteed. We let S
0
=10

4 . Ohmic heating effects, 

which only slightly modify the results are left out, enabling comparison with the results of [2]. 

 
!
p  

 

 

!
adiabatic

 

 

 

!
Bruno

 !
GWRM

 

0.05 6.1·10-3 1.0·10-3 stable 
0.07 7.7·10-3 1.9·10-3 stable 
0.10 9.8·10-3 3.2·10-3 3.2·10-4 
0.12 1.1·10-2 4.1·10-3 5.3·10-4 
0.15 1.3·10-2 5.8·10-3 3.0·10-3 
0.20 1.7·10-2 9.1·10-3 9.7·10-3 

 

The GWRM code verifies the stabilising effect of heat conduction on resistive g-modes at low 

beta, but classical growth rates are approached at higher beta, where !"  results are invalid.    

 

Conclusion 

Pressure driven, resistive g-modes are ever-present in the RFP according to classical, 

adiabatic !"  theory. More recent !"  theory seems to predict that heat conduction effects 

cause substantial stabilisation due to extension of the resistive layer. It is here shown, 

analytically and numerically, that these effects are limited to low beta and low Lundquist 

numbers only. Consequently, reactor relevant stabilisation of pressure driven modes in the 

RFP must be sought among other physical effects.  
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