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Introduction

Resonant magnetic field perturbations (RMPs) from external coils are a useful tool for miti-
gation of Edge Localized Modes (ELMs) in tokamaks. Linear theory predicts strong shielding
of the perturbations by the plasma. At the same time, quasilinear MHD analysis suggests that
RMPs may modify background plasma parameters and fully penetrate. In this report the prob-
lem of RMP interaction with the plasma is treated in quasilinear approximation within kinetic
theory for cylindrical tokamak geometry. The linear problem is solved by the KiLCA code (Ki-
netic Linear Cylindrical Approximation) and the quasilinear problem - by a 1-D balance code.
For this, we corrected our linear and quasilinear models by introducing a particle and energy
conserving collision operator. Unlike the linear model, the quasilinear model is very sensitive to
the details of the collision operator and it must be fully consistent with the conductivity model
inside the Maxwell equation solver. It is shown that the new collision operator ensures Onsager
symmetry of the quasilinear transport coefficient matrix and avoids artifacts such as fake heat
convection which may appear in simple collision models.

Basic equations

Both, the linear plasma conductivity and the quasilinear transport coefficients are determined by
the solution of the kinetic equation, Ly f= icp f where Ly is the Vlasov operator, ﬁcp =[.+1Lg

is an energy preserving collision operator,
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is the Ornstein-Uhlenbeck operator and L is an energy conserving term given by

2 2 oo V/2
Baf (i) = ————exp [ = | [ L —1 /dv’ Ay | Fr v, )
V21T 2\/% v% I v% |

This type of kinetic equation can be solved in cylindrical geometry up to the end in terms

of a Green’s function. The gyroaverage of the perturbed distribution function needed in the

quasilinear problem has the form
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where fm and v}, are the amplitudes of the Fourier series over toroidal and poloidal angles of
the perturbed distribution function and of radial guiding center velocity, respectively. Guyp is the

Green’s function, and the thermodynamic potentials are
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These potentials determine the particle and energy fluxes,
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through quasilinear diffusion coefficients. Retaining in v;, only parallel motion along the per-
turbed magnetic field and the E x B-drift (these are the dominating processes for electrons),

these coefficients are
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Also, the Fourier amplitude of parallel equilibrium current density which is responsible for
shielding the RMPs can be expressed in terms of the radial component of the magnetic perturba-
tion field By, and the the component of the electrostatic field cEy, | tangential to the unperturbed

flux surface and perpendicular to the magnetic field,
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The mismatch between the perturbed magnetic flux surfaces and the perturbed equipotential

surfaces is the reason for quasilinear transport in this approximation. The lowest order Larmor
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radius approximation used in 6) and in (8) is sufficient for the electrons. These quantities are
finally expressed via velocity moments of Green’s function
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which are determined by similar moments of Green’s function G defined in Ref. [1] as follows
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Due to the property Igl = ISO the diffusion tensor satisfies Onsager symmetry.

Using (6), balance equations for plasma density 7., toroidal ion rotation velocity Vi(p, and
electron and ion temperatures T¢ ; presented in Ref. [2] were solved for JET like parameters in
experiments with ELM mitigation by C-coil. Only the 3/1 mode of the coil spectrum has been
retained. Modelled are 4 variants of starting equilibria obtained by scaling the toroidal rotation
velocity V? by factors 0.8 and 1, see Fig. 1, and by changing the anomalous diffusion coefficient
by a factor 2. The results show that quasilinear effects do not lead to a significant increase in
field penetration and may also lead to even stronger shielding despite that the parallel electron
current in the resonant zone is reduced, see Fig. 2. In contrast to earlier MHD theories, the
main quantity responsible for quasilinear relaxation is the electron temperature. The sensitivity
of this quantity has been noticed earlier in Ref. [3]. In all cases, the perpendicular electron
fluid velocity is evolving to zero in the resonant zone. In MHD theory, this would lead to field

penetration. In kinetic theory, the point of field penetration is not the same, see Fig. 1.
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Fig. 1. Left: Radial profiles of |By,| before and after quasilinear relaxation. Right: Toroidal
torque and |BL,| at the resonant surface as functions of toroidal velocity scaling parameter.
Parameter values used for computations and corresponding to zero electron fluid velocity at the

resonant surface are indicated by black lines and red lines respectively.
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Fig. 2. Quasilinear heat conductivity coefficient (top), parallel electron current (middle), and
perpendicular components of electron fluid velocity (bottom). Dashed lines for the currents
and rotation velocity components show initial values. Thin lines correspond to evolution with

reduced anomalous coefficients.
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