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Abstract 

We introduce a mathematical and numerical formulation able to couple a nonlinear 

axisymmetric plasma evolution (in the perturbed equilibrium limit) with a three-dimensional 

volumetric description of external conductors. The proposed formulation is applied to some 

ITER configurations. 

 

Introduction 

Due to electromagnetic forces and heat loads, the plasma disruptions have a serious impact on 

the operational lifetime of several components and in extreme cases seriously damage the 

integrity of fusion devices themselves. Consequently, disruptions play a fundamental role in 

the design of key elements (e.g. the vessel) of new experimental devices like ITER [1]. 

The analysis of causes and effects of disruptions is typically based on experimental data [2], 

collected in present-day devices. In order to extrapolate the available data to next-generation 

devices, reliable and complete computational tools are needed. Unfortunately, disruptions are 

complex events, requiring in principle extremely detailed models. Presently, several 

modelling approaches are available for the analysis of disruptions, e.g.: 

- axisymmetric nonlinear models of plasma and conductors [3]; 

- 3D nonlinear models of plasmas, with an axisymmetric description of the structures [4]; 

- simplified plasma models (in terms of current-driven filaments) with a detailed 3D 

geometrical description of the structures [5]; 

- linearized plasma modelling, with detailed 3D structures [6, 7]. 

However, none of them is fully satisfactory, due to limitations and ranges of applicability. 

Consequently, the analysis of disruptions is one of the top priorities in modelling advances. In 

this paper, we present a formulation able to couple a nonlinear axisymmetric plasma model 

(perturbed equilibrium approach) with a three-dimensional volumetric description of 

surrounding structures. This formulation, in the stream of [6, 7], uses a coupling surface to 

describe the electromagnetic interaction between the plasma and the conductors.  
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Fig. 1. Reference geometry 

Formulation 

With reference to Fig. 1, the mathematical model is: 

L ψ = µ0 jϕ(ψ) in Ω 

Conductors equations in Ωe 
(1) 

where the equations in Ωe will be specified in the following, ψ is the magnetic flux per radian, 

L is the Grad-Shafranov operator and jϕ(ψ) is the toroidal current density in the plasma, 

depending nonlinearly on ψ. We can mathematically close the problem as follows: 

L ψ = µ0 jϕ(ψ) in Ω 

ψψ ˆ=
Ω∂  

(2) 

where the unknown quantity ψ�  can be expressed as: ψ� = ψ�
�
+ ψ�

�
; the suffix “p” (resp. "e") 

indicates the contribution of the (plasma) currents inside Ω  (resp. external currents). We give 

a weak form of (2) in Ω: 

( )∫∫∫ ΩΩ∂Ω
Ω=

∂

∂
+Ω∇⋅∇− dwjdSw

nr
dw

r
ψµ

ψ
ψ ϕ0

11

 

(3) 

where w is a suitable test function. Giving a 2D finite elements discretization of Ω∪Ωe, and 

calling λi the hat function related to the i-th node of the mesh, we expand ψ in Ω as: 

∑∑
∈∈

+=
bi Nj

jj
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ii λψλψψ ˆ

 

(4) 

where Ni (resp. Nb) is the set of indices of the nodes inside Ω (resp. on ∂Ω). Using the 

Galerkin method, (3) becomes: 

( ) ψψψ ˆÂfA −=
 

(5) 
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(6) 

For what concerns ψp, this quantity is solution of: 

L ψp =µ0 jϕ(ψ) in Ω 

L ψp = 0 in Ωe 

ψp regular at infinity 

(7) 

whose numerical solution can be written as:  

( )ψψ fA
p

~~~
=

 
(8) 

where quantities with “∼” have the same definitions as above, but extended over Ω∪Ωe. 

Inverting (8), we get: 
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(9) 

where E1 and E2 are suitable matrices containing 0’s and 1’s. Substituting in (5):  

( ) ( )
e

AfKAfA ψψψψ ˆˆˆ −−=
 

(10) 

The flux due to external currents in 3D conductors is computed with the same approach used 

in the CarMa code [6, 7]. Calling I the 3D currents, we have (matrices are defined in [6, 7]): 
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(11) 

where V are the voltages fed to electrodes and Ieq are equivalent toroidal currents that provide 

the same poloidal magnetic field as plasma outside Ω [7]. We assume no plasma toroidal flux 

variation. The various matrices introduced in (11) are defined in [6, 7]. Using an implicit 

Euler scheme to discretize time derivative: 

( )
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e
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=

+∆=+∆+

 (12) 

where cprev is a known term depending on the previous time step.  Combining (10) and (12), 

we get, with suitable definitions, the following nonlinear system of equations: 

A ψ + H1 f(ψ) + H2 f(ψ) + H3 V + dprev = 0 (13) 
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(a)      (b) 

Fig. 2. (a) Plasma configuration, 2D mesh in the plasma region and 3D conducting structures;  

(b) Comparison of magnetic flux in the nodes of the 2D finite elements mesh  in the plasma region 

 

Results 

We consider an ITER configuration, with the following parameters: plasma current Ip=15MA, 

current centroid (6.29 m, 0.57 m), poloidal beta βp=0.75, internal inductance li=0.79, 

elongation 1.878, triangularity 0.497. The plasma is circumvented by a conducting structure, 

which is discretized with a three-dimensional mesh mimicking an axisymmetric structure, in 

order to compare the results with available axisymmetric codes. Fig. 2a shows the plasma 

configuration, the 2D mesh in the plasma region and the 3D conducting structures considered. 

To test the procedure, we consider a current variation in one of the external conductors, giving 

rise to a significant variation of plasma configuration (around 15 cm of radial displacement 

and 3 cm of vertical displacement of the current centroid). Fig. 2b reports the comparison of 

the present formulation with an axisymmetric nonlinear code, showing excellent agreement. 
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