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Abstract

The resonant interaction between three waves in a uniform magnetized plasma is reconsidered. Start-
ing from previous kinetic expressions, that contain a general but too little used result, we are able to
improve the formulas. This leads to an explicit expression for the three wave coupling coefficient which
applies for arbitrary wave propagation in a magnetized Vlasov plasma.

Introduction
The resonant interaction between three waves in a plasma has now been studied during more than half a

century. The first review of such processes in an unmagnetized plasma [1] was followed by specific studies
for a magnetized plasma. In Ref. [2], a general theory for wave interactions in a cold one-component plasma
was then developed. The numerous subsequent improvements of the theory were later reviewed in Refs. [3]
and [4].

However, partly due to the lack of simple explicit expressions for the coupling coefficients, the production
of alternative formulas continued. In the present paper we are going to discuss another expression which
can be considered as the final result of previous efforts.

Results
Considering the resonant interaction between three waves with frequencies ω j ( j = 1,2,3) and wave

vectors k j, we assume that the matching conditions

ω3 = ω1 +ω2 (1)

and
k3 = k1 +k2 (2)

are satisfied. When calculating the coupling coefficients, it turns out that they contain a common factor V.

It is then possible to write the three coupled equations as

dW1,2

dt
=−2ω1,2ImV (3)

and
dW3

dt
= 2ω3ImV (4)

where W = ε0E∗ · (1/ω)∂ (ω2εεε)E is the wave energy, εεε is the usual textbook dielectric tensor, and ImV
stands for the imaginary part of V where ([3])
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where ω jd = ω j− k jzvz− p jωc, I j (= exp(iθ j))= (k jx + ik jy)/k j⊥, and the velocity u jp j satisfies

ω jdu jp j + iωc�z×u jp j =
iq

mω j

�
ω jdJp jE j +

��
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�
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�
(6)

where Jp j = Jp j(k j⊥v⊥/ωc) denotes a Bessel function of order p j.
The general theory for resonant three-wave interactions in plasmas then shows that the growth rate γ can

be determined from [3]

γ2 =
ω1ω2 |V|2

W1W2
. (7)

Eq. (7) is very useful when rather complex kinetic effects are involved, for example in the interaction
between two kinetic Alfvén waves and one ion-sound wave [5].

The development of, for example, the z-components (E jz) of the wave electric field amplitudes is here
governed by the three coupled bilinear equations (e.g. [3])

dE∗1z

dt
= α1E2zE∗3z (8a)

dE∗2z

dt
= α2E1zE∗3z (8b)

and
dE3z

dt
= α3E2zE1z (8c)

where the z-axis is along the external magnetic field (B0�z), the star denotes complex conjugate, α j are the
coupling coefficients, d/dt = ∂/∂ t +vg j ·∇+ν j where vg j is the group velocity of wave j, and ν j accounts
for the linear damping rate. Formulas that determine the coefficients α j for a magnetized Vlasov plasma
have been derived previously [3], although in rather inexplicit forms. It is the purpose of the present paper
to point out that explicit expressions for α j can also be deduced from those formulas.

Starting from Eqs. (12)-(14) of Ref. [3] it turns out that we can write α j in the comparatively simple
form

α1,2 =
M1,2

∂D(ω1,2,k1,2)/∂ω1,2
C (9a,b)

and
α3 =− M3

∂D(ω3,k3)/∂ω3
C (9c)

where the general coupling constant C as well as D and Mj are given by Ref. [6].
As a specific example we first mention the limiting case where all the waves are electrostatic. In that limit

Eq. (6) reduces to

39th EPS Conference & 16th Int. Congress on Plasma Physics P5.132



u jp j =− iq

mω jdkz j

�
1−ω2

c /ω2
jd

�
�

k j−
iωc

ω jd
�z×k j−

ω2
c

ω2
jd

kz j�z
�

Jp j (10)

whereas Mj in (9) is

Mj =
k2

z jk
2
⊥ jc

4

ω2
j

(11)

and the dispersion function D(ω j,k j) is described by the wellknown formula (c.f. Ref. [3])
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�
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(12)

Thus the expressions for α j are comparatively simple in the electrostatic limit.
Finally, we point out that Eqs. (10)-(12) have recently been generalized [6] so that arbitrary wave prop-

agation is now also included. As the corresponding expressions for α j are lengthy, we refer the reader to
Ref. [6].

Conclusions
In the present paper we have improved the limiting results for three wave interactions in a cold plasma

and pointed out that the explicit expressions for the coupling coefficients for wave interactions in a hot
magnetized Vlasov plasma have been found recently. Our coupling coefficient C can thus be used as a
starting point to estimate the coupling strength where the interaction between any kind of waves in a plasma
has to be considered. It can also be useful in interpretations of stimulated scattering of electromagnetic
waves in space plasmas. In the latter case we refer the reader to a short historical account of stimulated
electromagnetic emissions in the ionosphere [7]. Our results can also play a key role in the theoretical
interpretations of laser-fusion experiments.
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