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Nonlinear partial differential equations have attracted a great deal of interest in recent years. 

Analytical solutions can also be obtained by different methods such as Adomian decomposition 

method, variational iteration method, homotopy analysis method and homotopy perturbation method 

(HPM). In the last method the solution is considered as a summation of an infinite series which usually 

converges rapidly to the exact solutions. The nonlinear Schrödinger equation (NLS) and the coupled 

nonlinear Schrödinger equation (CNLS) are one of the important partial differential equations which 

are often encountered in many branches of physics, chemistry and engineering, due to that, many 

researchers have motivated to solve them exactly or numerically.  

Here, the numerical analysis of the coupled nonlinear Schrodinger equation (CNLS) is studied by 

the Homotopy Perturbation Method (HPM). The available analytical solution of one-dimensional 

CNLS obtained by Wadati et. al. is compared with HPM to examine the accuracy of the method.  

Consider the non-linear differential equations, to illustrate the basic idea of the coupled HPM, 

    0 rfvuA ,   ,      0 rgvuB ,                                                                                                 (1) 

with the boundary condition 0
boundarytheon

nvnuvuC )ˆ/,ˆ/,,( , where A  and B  are general 

differential operators, C is the boundary operator. Assume that operators A  and B  have two; linear 

( 21 , LL ) and nonlinear ( 21, NN )parts. One can rewrite the Eq. (1) as 

      011  rfvuNuL , ,        022  rgvuNvL ,                                                                      (2) 

Using the homotopy technique, we construct new functions ),( prU , ),( prV , which satisfies: 

            01 011  rfUApuLULp ,             01 022  rgVBpvLVLp                    (3) 

where ),( 00 vu  is an initial approximation of ),( vu  which satisfies the boundary conditions. From 

changing parameter p  from zero to unity, the functions ),( prU , ),( prV  will change from 0u , 0v to 

)( ru , )( rv  . Now, assume that the solution can be written as a power series in p , 

 2
2

10 UppUUU  ,   2
2

10 VppVVV
                                                                     

(4) 

Now, we will use this method for solving the following coupled nonlinear Schrodinger equations.  
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where  yx, and  yx,  are the wave amplitudes in two dimensions and ia , ib  are constant 

coefficients. By using ivu   and izw  one can separate Eqs. (6) into the real and the 

imaginary parts. Therefore,  

    022
8

22
7

22
6

22
54321  zzwavuavzwavuavavauauau yyxxyxt )()()()(        (6) 

    022
8

22
7

22
6

22
54321  wzwavuauzwavuauauavavav yyxxyxt )()()()(

     

    022
8

22
7

22
6

22
54321  zzwbvubvzwbvubzbzbwbwbw yyxxyxt )()()()(         

    022
8

22
7

22
6

22
54321  wzwbvubuzwbvubwbwbzbzbz yyxxyxt )()()()(         

By defining new functions ),( prU , ),( prV , ),( prW , ),( prZ which satisfies: 
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By substituting solutions (4), into Eqs. (7), and equating the coefficients of the terms with the identical 

powers of p , 

00000000
0 zZwWvVuUp  ,,, ,  
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where we will continue for finding other terms of serie.  

For example, consider the propagation of pulses with equal mean frequencies in nonlinear fiber, which 

is governed by the coupled nonlinear Schrodinger equation [11], 

  0
2

1 22

2

2



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

















e

xxt
i  ,                                                                                (8-a) 
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where , are the wave amplitudes in two polarizations and  is the normalized strength of the 

linear birefringence. Following the discussions of Wadati et. al. [12], the exact solution of Eq. (8) is 

    tvxvivtxh
e

tx )(.)(exp)(sec),( 


2502
1

2 22 


 ,                                    (9-a) 

    tvxvivtxh
e

tx )(.)(exp)(sec),( 


2502
1

2 22 


 ,                                   (9-b) 

where   and v  depend on initial value (for simplicity 1 ). By assuming 5.0  and 3/2e  

in equation (8) and 5.011  ba , 5.033  ba , 175  ba , 3/286  ba , 08742  aaaa , 

06542  bbbb , in Eq. (5), both set of equations are the same. Solution of Eqs. (5) with initial 

conditions,    22210 /cossec. xxhu     22210 /sinsec. xxhv  ,    xxhw 232210 /cossec. ,  
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   xxhz 232210 /sinsec. and by homotopy technique is 
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The closed form of solution are the same as Eqs (10). 

As a conclusion, we have developed the homotopy perturbation method (HPM). Numerical 

analysis of the coupled (one and two dimensions ) nonlinear Schrodinger equation (CNLS) is studied 

by using the HPM. The available analytical solution of one-dimensional CNLS obtained by Wadati  

et.al. is compared with HPM to examine the accuracy of the method. The numerical results validate 

the convergence and accuracy of the HPM for analyzed CNLS.  
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