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Nonlinear partial differential equations have attracted a great deal of interest in recent years.
Analytical solutions can also be obtained by different methods such as Adomian decomposition
method, variational iteration method, homotopy analysis method and homotopy perturbation method
(HPM). In the last method the solution is considered as a summation of an infinite series which usually
converges rapidly to the exact solutions. The nonlinear Schrodinger equation (NLS) and the coupled
nonlinear Schrddinger equation (CNLS) are one of the important partial differential equations which
are often encountered in many branches of physics, chemistry and engineering, due to that, many
researchers have motivated to solve them exactly or numerically.

Here, the numerical analysis of the coupled nonlinear Schrodinger equation (CNLS) is studied by
the Homotopy Perturbation Method (HPM). The available analytical solution of one-dimensional
CNLS obtained by Wadati et. al. is compared with HPM to examine the accuracy of the method.

Consider the non-linear differential equations, to illustrate the basic idea of the coupled HPM,
Au,v)-f(r)=0 , B(u,v)-g(r)=0 1)

with the boundary condition C(u,v,au/aﬁ,av/aﬁ)| =0, where A and B are general

ontheboundary
differential operators, C is the boundary operator. Assume that operators A and B have two; linear

(L,, L,)andnonlinear (N,, N,)parts. One can rewrite the Eq. (1) as

Ly(u)+ Ny(u.v) = £(r)=0, Ly(v)+Ny(u.v)-g(r)=0 )
Using the homotopy technique, we construct new functionsU(r,p), V(r, p), which satisfies:
(1- pILi(U)-Ly(uo)l+ p[AWU) - 1 (r)]=0, (1= p)[Lo (V) - Ly (vo )]+ p[B(V)-g(r)] =0 (3)

where (u,,Vv,) is an initial approximation of (u,v) which satisfies the boundary conditions. From
changing parameter p from zero to unity, the functions U(r,p), V(r, p) will change from u,, v,to
u(r), v(r) . Now, assume that the solution can be written as a power series in p,

U=Ug+pU;+p2Uy+--, V=Vy+pV,+p2V, +-- (4)

Now, we will use this method for solving the following coupled nonlinear Schrodinger equations.
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i(®, +2,0, +a,D,)+a,D, +a,D,, + (@0 +a;| ¥ )0+ (a,|® +a,|¥|")¥ =0 (5-a)
(W, +b,P, +b,%, )+ bW, +b, ¥, + (b + by @] Joo + o, ¥ +b,[0* ) =0 (5-b)
where @(x,y)and¥(x,y) are the wave amplitudes in two dimensions and a,, b, are constant

coefficients. By using ® =u+iv and W =w+iz one can separate Eqgs. (6) into the real and the
imaginary parts. Therefore,

Uy + 84U, + 85U, +agVy, +84V,, +[a5(u2 +V% ) +ag (W +22)}\/+[a7(u2 +V% ) +ag (W +22)]z =0 (6
—Vy =34V, — 8V, + aglyy + a4, +[a5(u2 +V2 )+ ag(W? + 22)}1 +[a7(u2 +V2 )+ ag (W +22)}\N:0

W, + bW, +b,w, +byz,, +b,2,, +[b5(u2 +V%) + g (W +22)}\/+[b7(u2 +V% ) + by (W +22)]z =0

— 7, —byz, — bz, +baw,, +b,w,, +[b5(u2 +V2 )+ bg (W +22)}J+[b7(u2 +V? ) +bg (W +22)}\N=0

By defining new functions U(r,p), V(r,p), W(r,p), Z(r, p)which satisfies:

(1=pJU -Up ) + U +al), +aU, +agV,, +aV,, +aV(U% +V2)+aV(W? +2% )+, Z(U2 +V2 J+a,ZW? +2°)1 =0 (7)
—(1—p)(V+v0)t—p[Vt+a1VX+a2Vy—a3UXX—a4UW—a5U(U2+V2)—a6U(W2+ZZ)—a7W(U2+V2)—a8W(W2+ZZ)]=O
(1—p)(\N—W0)t+p[\Nt+b1WX+b2Wy+b3ZXX+b4Zyy+b5V(U2+V2)+b6V(W2+ZZ)+b7Z(U2+V2)+Zb8(W2+Zz)]:0
(1—p)(—Z+zo)t—p[Zt+b1ZX+b22y—b3WXX—b4WW+b5U(U2+V2)+b6U(\N2+ZZ)+b7W(U2+V2)+b8W(\N2+ZZ)]=0

By substituting solutions (4), into Egs. (7), and equating the coefficients of the terms with the identical

powers of p,

Ult + a‘lu 0x + a'2U0y + a3VO><x + a‘4V0yy + [as (UO2 +V02) + a6 (VVO2 + ZOZ)]VO
+ [a7 U2 +V72)+ag (W, + ZOZ)]Z0 =0
=V — Vo, —a,Vy, +aUg, +a,Ug, + [as (Uo2 +V02)+ ag (Wo2 + Zoz)]uo
L) a U HV) e, W+ 2w, =0
Wy DWW, D Wy 5,70, +D,Z4,, + [0, (U +VE) + b, WE +22) ],
b, U2 +V2) +b, W2 +22)]Z, =0
—-Z,-bZ,, _bZZOy + bW +b4W0yy + [b5 (U(;Z +V02) +Dg (Wo2 + Zoz)]uo
+ o, U2 +V) + bW +Z2)W, =0
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U, +aUy, +aU,, +aVy, +a,V,, + [a,(2U U, +2V,V,) +a, (QW W, +2Z,Z,)V,
+a,[(2UgU, + VV,) + g (W W, +2Z,Z,)1Z, + [as (UZ +V2) +a, WZ + 28V,
+[a, U2 +V2) +a,WZ + 28]z, =0
_V2t - alle - aZVly + asu 1w T a4U lyy + [as (2U 0U1 + 2V0V1) +as (2W0W1 + Zzozl)}-J 0
12, (2U U, + VV,) + 8 (W W, +2Z,Z, )W, +[a, (UZ +VZ) + 3, WZ +22) Y,
5. +[a7(U02 +V02)+a8(\N02 +Z()2)}N1 =0
W, + bW, +0,W,, +b,Z, +b,Z,, +[bg (2U U, +2VoV,) +bs (W W, +2Z,Z,),
+b,[(2U,U, + 2V, ) + by (QWW, +2Z,Z,)1Z, +[os (U2 +V2) +b, W2 +Z2) N,
+ [b7(U§ +V02)+b8(W02 +Z§)]Zl =0
- er - blle - bzzly + bSWlxx + b4ley + [bs (2U 0U1 + 2V0V1) + bs (2W0W1 + ZZOZI)pO
1D, (2U U, + 2VeV,) + by (QWW, +2Z,Z, )W, + b, (UZ +V2) + b, WZ +Z2) D,
+ o, U2 +V2) +b,wg + 28V, =0

where we will continue for finding other terms of serie.

For example, consider the propagation of pulses with equal mean frequencies in nonlinear fiber, which

is governed by the coupled nonlinear Schrodinger equation [11],

.[aq> aq>j 10°®

| —+n— [+ >—
ot OX 2 OX

+ Q<D|2 + el‘Plz)cb =0, (8-a)

(W) +efof* Jo =0, (8b)

(23] icy
a Tx) 2
where @, Ware the wave amplitudes in two polarizations and 7 is the normalized strength of the

linear birefringence. Following the discussions of Wadati et. al. [12], the exact solution of Eq. (8) is

Dxt)= /12+“e sech(V2a(x—vt))explilv -1 )x —0.5(v? % —2a 1]}, (9-a)
2 s )
Y(ixt)= i‘/1+e sech(@(x—vt))exp{l[(v+77)x—0.5(v -7 —2a)t]}, (9-b)

where o and v depend on initial value (for simplicity & =v =1). By assuming 7 =0.5 and e=2/3
in equation (8) and a, =-b, =05, a, =b, =05, a, =b, =1, a;, =b, =2/3, a,=a, =a, =3, =0,
b, =b,=b, =b; =0, in Eq. (5), both set of equations are the same. Solution of Egs. (5) with initial
conditions, u, = A2 sech(v2x)eos(x/2) Vo =~1.2 sech(v2x)sin(x/2) , wy = 1.2 sech(v2x)cos(3/2x) ,
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7y =1.2 sec h(ﬁx)sin(3 /2x) and by homotopy technique is

U, =t(=5/8sech(~2x)sin(x/2)+2 cos(x/2)sech(~2x ) tanh(~2x))
\2 :t(5/8sech(\/§X)cos(X/2)+\/Esin(x/2)sech(\/§X)tanh(\/§X))

W, =t(—5/8sech(~2x)sin(3x/2) +/2 cos(3x/ 2 ) sech(~2x ) tanh([2x )
Z, =t(5/8sech(\2X)cos(3x/2) +~2 sin(3x/ 2 ) sech(\2X ) tanh(~/2x))

= %tz[—153 cos(x/2)sech(\/§X)—80\/5sech(\/EX)sinh(X/2)tanh(\/§X)+ 256 cos(x/2)sech(x/§X)tanh(\/§X)2]

1
V, = ——
27128

W, = %tz[—153cos(3x/2)sech(\/§X)—80\/§sech(\/§x)sinh(3x/2)tanh(\/§X)+256cos(SX/2)sech(\/§X)tanh(\/§X)2]
1

Z, =

27128

U,

t2/-153 sin(x/ 2 ) sech(~2x )+ 802 sech(~2x ) cos(x/ 2 ) tanh(~2X ) + 256 sin(x / 2 ) sech(~2X ) tanh(~2x )? ]

t2/-153 sin(3x/ 2 ) sech(\2x) + 8042 sech(~2X ) cos(3x/ 2 ) tanh(~2X ) + 256 sin(3x/ 2 ) sech(~[2X ) tanh(~[2x )? ]

U, =t%/0.67 sin(x/2) sech(~2x)—1.86+/2 sech(~2x ) cos(x / 2) tanh(~2x)

-1.25 sin(x/2)sech(\/§X)tanh(\/§X)2 +2\/§sech(\/§X)c0s(X/2)tanh(\/§x)3]
Vs, =t3/-0.67 cos(x/ 2) sech(~2x)—1.86~/2 sech(~2x) sin(x / 2 ) tanh(~2x)

-1.25 cos(X/2)sech(\/§X)tanh(\/§X)2 +2\/§sech(«/§X)sin(X/2)tanh(\/§X)3]
W =t%/0.67 Si}’l(3X/2)Sech(\/EX)—1.86\/§S€Ch(\/§X)COS(3X/2)tanh(\/§X)

—1.255in(3%x/2) sec h(\/EX) tanh(\/ix)2 +2\/§sech(\/§X)cos(3x/2) tanh(\/ix)e’]
Z, =t°[2.64 cos(3x +2y)sech/\2x 2y ] ~3.242 sin(3x + 2y)

sech[~2x—~2y ] tanh[\2x—J2y ] —3.5508(3% +2y)sech/\2x —~2y ] tanh[/2x—~[2y ] 2
+2w/§sin(3x+2y)sech[w/§X—w/§y] tanh[w/EX—w/Ey]S]

The closed form of solution are the same as Eqs (10).

As a conclusion, we have developed the homotopy perturbation method (HPM). Numerical

analysis of the coupled (one and two dimensions ) nonlinear Schrodinger equation (CNLS) is studied

by using the HPM. The available analytical solution of one-dimensional CNLS obtained by Wadati

et.al. is compared with HPM to examine the accuracy of the method. The numerical results validate

the convergence and accuracy of the HPM for analyzed CNLS.
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