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From a dynamical point of view, plasma physics, be it in astrophysical conditions or lab-

oratory configurations, possesses an intrinsic nonlinear character. While a linear analysis will

identify the possible instabilities that might develop at each dynamical scale and their respec-

tive intensities, it is the nonlinear couplings that are responsible for the transfer of information

(energy, correlation functions, etc.) between the scales of the system. The nature of the transfers

between scales leads to complications in the study of plasma physics, as strong nonlinear cou-

plings tend to link the macroscopic and microscopic characteristics of the problem. Generally,

the strength of such a link is assessed by looking at the scale locality of the dynamical system.

In the current short paper, we will present a way to measure the locality of interaction between

different scales for a turbulent plasma state, in the gyrokinetic (GK) approximation. From the

start, it is seen that the constraint imposed by the magnetic guide field on the charged flow

creates an anisotropy in the system. The current work concentrates on the analysis of perpen-

dicular spatial structures of electrostatic fluctuations generated by an ion-temperature gradient

instability in toroidal axisymmetric flux tube geometry (x label refers to the magnetic flux sur-

face, the y label identifies different field lines lying on the same flux surface) for a single ion

species and adiabatic electrons. The total ion distribution function is split into an appropriately

normalized Maxwellian part F0 and a perturbed part f , the non-adiabatic contribution of the

ion distribution function is given as h = f +(Zφ̄1/T0)F0, where φ̄1 is the gyro-averaged self-

consistent electrostatic potential (linear in f ) found from the gyrokinetic Poisson equation, T0

is the ion background temperature (normalized to the electron temperature) and Z is the electric

charge. Details of this work are presented elsewhere [1].

To understand the dynamics introduced by the nonlinear term, N[ f , f ] = ∂ φ̄1
∂y

∂h
∂x −

∂ φ̄1
∂x

∂h
∂y , that

enters in the evolution equation of the ion distribution function (∂t f ), the scale redistribution

of free-energy (a GK ideal invariant, i.e. a global quantity that remains constant in time in the

absence of source and sink effects) is usually investigated. The global free-energy contained in

the system is defined as, E = 1
2
∫

dxdydΘ T0
F0

h f , where dΘ = (πB0n0)dzdv‖dµ . To analyze the
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excitation degree of perpendicular turbulent scales, an integral over the dΘ infinitesimal element

and a Fourier decomposition of the remaining (x,y) space are performed. Each perpendicular

scale of length can now be easily identified by the norm (k) of the wave-vector based in the kx,

ky space (units of inverse ion Larmor radius). As result of the quadratic nonlinearity in f , the

triple-scale-transfer that appears in the the free-energy evolution equation for a scale reads as,

T (k|p,q)=
∫∫∫

|k|=k, |p|=p, |q|=q

dkdpdq

{∫
dΘ

T0

2F0

[
qx py−qy px

][
φ̄1(q)h(p)−φ̄1(p)h(q)

]
h(k)δ (k+p+q)

}
, (1)

where the symmetry in scales q and p is written explicitly [2]. The Dirac delta selects only

interactions that occur between a triad of modes which obey the resonance condition, k + p +

q = 0 and the braces isolates the transfers that takes place for a single triad, known as the triad-

transfer. For a triad, the free-energy conservation by the nonlinear interaction can be written as,

T (k|p,q)+T (p|q,k)+T (q|k,p) = 0.
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Figure 1: The free energy flux across the shell

boundaries normalized by the total dissipa-

tion rate D . The vertical dashed lines repre-

sent the shell boundaries, typically given as a

power law in terms of the wavenumber, here

kn = k0 × 2(n−1)/5. For the CBC simulation

considered here, k0 = 0.258.

Taking a cutoff surface through the wavenum-

ber space, identified by the kc, we define the en-

ergy flux across that scale as,

Π(kc) =−
∫ kc

0
dk T (k) =

∫ ∞

kc

dk T (k)

=
∫ ∞

kc

dk
∫∫ ∞

0
dp dq T (k|p,q) . (2)

As example, in Figure 1 we show the free en-

ergy flux normalized by the total dissipation

rate D (equal to the total injection rate for a

stationary state). As a particularity of GK tur-

bulence, we observe that only a fraction (54%

here) of the energy injected into the system contributes to the nonlinear cascade. This is due to

the nontrivial dissipative character of GK turbulence, which acts at all scales. In fact, the scale

flux plateau level is given by the sum of the positive part of the linear contribution, L +.

To better understand the triple-scale-transfers contributing to the energy flux, we decompose

the last two integrals over p and q in respect to kc,

Π(kc) =
∫ ∞

kc

dk

[∫ kc

0
dp

∫ kc

0
dq

︸ ︷︷ ︸
I

+
∫ kc

0
dp

∫ ∞

kc

dq
︸ ︷︷ ︸

II

+
∫ ∞

kc

dp
∫ kc

0
dq

︸ ︷︷ ︸
III

+
∫ ∞

kc

dp
∫ ∞

kc

dq
︸ ︷︷ ︸

IV

]
T (k|p,q) . (3)

The first term (I) contains the contribution of triads which have both legs across the surface.

For the second term (II), only p is across the cutoff surface, while for the third term (III)

only the q leg of the triad penetrates the surface. These two terms are equal in contributions
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Figure 2: The contributions to the free

energy flux across kc, from p and q.

since the triple-scale-transfer (T (k|p,q)) is symmetric

in p and q. The last term (IV ) is always zero due to the

conservation of interactions. These terms contributions,

in respect to p and q, are represented in Figure 2.

Starting from the definition of the flux, the infrared

(IR) locality function is then defined by taking a second

probe wavenumber surface (kp) in such a way (kp ≤ kc)

that it limits the selection of triads that contribute to the

energy flux through kc, [3]. Conceptually, the definition

can be seen as being obtained from Eq. 3, by replacing

the limits of the integrals inside the square bracket from

kc to kp and it reads as,

Πir(kp|kc) =
∫ ∞

kc

dk

[∫ kp

0
dp

∫ kp

0
dq+2

∫ kp

0
dp

∫ ∞

kp

dq

]
T (k|p,q) . (4)

A similar definition is made for the ultraviolet (UV) locality functions, kc ≤ kp,

Πuv(kp|kc) =
∫ kc

0
dk

[∫ ∞

kp

dp
∫ ∞

kp

dq+2
∫ kp

0
dp

∫ ∞

kp

dq

]
T (k|p,q) . (5)

which measures the contribution to the flux through kc from triads of modes with at least one

wavenumber greater than kp, therefore providing information regarding the locality makeup of

a scale kc in relation with smaller and smaller scales. The idea of locality can be seen as the

disparity between scales contributing to a nonlinear interaction. For a given energy flux through

a scale, the degree to which each scale contributes to the mentioned flux represents an assertion

of locality, [4]. For the interaction to be local, the contribution of highly separated scales should

be small and decrease fast with the increase in separation between kc and kp.

Looking at the plot of Πir (kp|kc)/Π(kc) as a function of kp/kc and Πuv (kp|kc)/Π(kc) as a

function of kc/kp will reveal information related to the locality characteristic of the non-linear

terms. The collapse of the locality functions dependence on kp for different values of kc repre-

sents a clear sign of self-similarity of the nonlinear interactions, which implies a dominance of

the nonlinear terms in regard to the linear ones. Moreover, if the mentioned collapse exhibits a

slope (in a log-log scale), then a state of asymptotic locality can be inferred, i.e. the nonlinear

interactions saturate dynamically to the same level, no mater how large the turbulence level

becomes. From our simulations, Figure 3, none of these two behaviors can be clearly observed.

Theoretically, a (kp/kc)±5/6 exponent for the IR and UV locality functions can be determined

for an infinitely long inertial range, using scaling arguments similar to [5] and the fields scalings
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Figure 3: The IR and UV locality functions, displayed for selected cutoff wavenumbers identi-

fied by the boundary index c. Dashed lines equal or proportional to different power laws of the

abscissae are displayed for reference.

provided by [6]. Although an asymptotic 5/6 scaling of the IR and UV locality functions seems

plausible and would indicate a more local interaction compared to magnetohydrodynamic tur-

bulence (2/3) but more non-local compared to fluid turbulence (4/3), these values can not be

clearly identified from our simulations. First, we need to consider that the theoretical 5/6 ex-

ponent is found in the limit of an infinite inertial range, an ansatz not verified in any range for

our GK turbulence simulation. In spite of the local energy cascade [6, 7], due to dissipation,

the interaction of a given scale with smaller ones will be strongly damped, increasing the scal-

ing of the UV locality functions. The same scale will itself be damped compared to the larger

scales, decreasing the IR locality exponent. An effective non-local IR contribution signifies a

dependence of GK turbulence on the type of instability driving it, while a stronger local UV de-

picts an insensitivity of GK’s large scales on the small scales and therefore the type of collision

mechanism employed.
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