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Locality of non-linear interactions in gyrokinetic turbulence
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From a dynamical point of view, plasma physics, be it in astrophysical conditions or lab-
oratory configurations, possesses an intrinsic nonlinear character. While a linear analysis will
identify the possible instabilities that might develop at each dynamical scale and their respec-
tive intensities, it is the nonlinear couplings that are responsible for the transfer of information
(energy, correlation functions, etc.) between the scales of the system. The nature of the transfers
between scales leads to complications in the study of plasma physics, as strong nonlinear cou-
plings tend to link the macroscopic and microscopic characteristics of the problem. Generally,
the strength of such a link is assessed by looking at the scale locality of the dynamical system.

In the current short paper, we will present a way to measure the locality of interaction between
different scales for a turbulent plasma state, in the gyrokinetic (GK) approximation. From the
start, it is seen that the constraint imposed by the magnetic guide field on the charged flow
creates an anisotropy in the system. The current work concentrates on the analysis of perpen-
dicular spatial structures of electrostatic fluctuations generated by an ion-temperature gradient
instability in toroidal axisymmetric flux tube geometry (x label refers to the magnetic flux sur-
face, the y label identifies different field lines lying on the same flux surface) for a single ion
species and adiabatic electrons. The total ion distribution function is split into an appropriately
normalized Maxwellian part F and a perturbed part f, the non-adiabatic contribution of the
ion distribution function is given as & = f + (Z¢, /Ty) Fy, where ¢, is the gyro-averaged self-
consistent electrostatic potential (linear in f) found from the gyrokinetic Poisson equation, T
is the ion background temperature (normalized to the electron temperature) and Z is the electric
charge. Details of this work are presented elsewhere [1].

To understand the dynamics introduced by the nonlinear term, N[f, f| = %—q;l% — %3—;’ that
enters in the evolution equation of the ion distribution function (d, f), the scale redistribution
of free-energy (a GK ideal invariant, i.e. a global quantity that remains constant in time in the
absence of source and sink effects) is usually investigated. The global free-energy contained in

the system is defined as, & = % J dxdyd® % hf , where d® = (wBong)dzdv|du. To analyze the
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excitation degree of perpendicular turbulent scales, an integral over the d® infinitesimal element
and a Fourier decomposition of the remaining (x,y) space are performed. Each perpendicular
scale of length can now be easily identified by the norm (k) of the wave-vector based in the &,
ky space (units of inverse ion Larmor radius). As result of the quadratic nonlinearity in f, the

triple-scale-transfer that appears in the the free-energy evolution equation for a scale reads as,

Ty - _
7(klp.a) =/ dkdpdq{ /d@z—Fo[qxpy—qypx}[m<q>h<p>—¢1<p>h<q>]h<k>6<k+p+q>}, (M
[k|=k, [p|=p. lal=q
where the symmetry in scales ¢ and p is written explicitly [2]. The Dirac delta selects only
interactions that occur between a triad of modes which obey the resonance condition, kK + p +

q = 0 and the braces isolates the transfers that takes place for a single triad, known as the triad-

transfer. For a triad, the free-energy conservation by the nonlinear interaction can be written as,

T(klp,q)+T(plg,k) +T(qk,p) =0. 10°
Taking a cutoff surface through the wavenum- . L1D=054
ber space, identified by the k., we define the en- %10‘2-
ergy flux across that scale as,
kc A =] 0
(k) = — / dkT(k)= [ dkT(k) 1 1
0 k.

o oo ¢ Figure 1: The free energ}; flux across the shell

- /kc dk / /0 dpdg T(klp,q). () boundaries normalized by the total dissipa-

As example, in Figure 1 we show the free en- tion rate &. The vertical dashed lines repre-

ergy flux normalized by the total dissipation sent the shell boundaries, typically given as a

rate 7 (equal to the total injection rate for a power law in terms of the wavenumber, here

stationary state). As a particularity of GK tur- &, = ko X 2(=1/5 For the CBC simulation

bulence, we observe that only a fraction (54% considered here, kg = 0.258.

here) of the energy injected into the system contributes to the nonlinear cascade. This is due to

the nontrivial dissipative character of GK turbulence, which acts at all scales. In fact, the scale
flux plateau level is given by the sum of the positive part of the linear contribution, £

To better understand the triple-scale-transfers contributing to the energy flux, we decompose

the last two integrals over p and ¢ in respect to k.,
o0 ke ke ke 0 o ke ) )
H(kc):/dk /dp/ dq+/ dp/ dq+/dp/ dq+/ dp/ dg |TUp.a). 3
ke | J0 0 Jo ke o Jk 0 Jk ke
1 ) 1 v

The first term (/) contains the contribution of triads which have both legs across the surface.

For the second term (/I), only p is across the cutoff surface, while for the third term (/17)

only the g leg of the triad penetrates the surface. These two terms are equal in contributions
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since the triple-scale-transfer (T (k|p,q)) is symmetric A e
in p and ¢q. The last term (/V) is always zero due to the <
conservation of interactions. These terms contributions, (I1)

in respect to p and ¢, are represented in Figure 2. k.

Starting from the definition of the flux, the infrared %%
(IR) locality function is then defined by taking a second i U/{Ié
probe wavenumber surface (k,) in such a way (k, < k.) %
that it limits the selection of trI;ads that contribut: to the ///%

energy flux through k., [3]. Conceptually, the definition k p

c

can be seen as being obtained from Eq. 3, by replacing Figure 2: The contributions to the free
the limits of the integrals inside the square bracket from energy flux across k., from p and q.

ke to kj, and it reads as,

o0 ky kp kp 00
Hir(kp|kc):/k dk /0 dp/o dq+2/0 dp/k dq|T(k|p,q) - 4
c p

A similar definition is made for the ultraviolet (UV) locality functions, k. < k,,,

kC oo oo kp oo
M k)~ dk[ [o [Cagv2[ e ["aq
P 4 P

which measures the contribution to the flux through k. from triads of modes with at least one

T(klp,q) - (&)

wavenumber greater than k,, therefore providing information regarding the locality makeup of
a scale k. in relation with smaller and smaller scales. The idea of locality can be seen as the
disparity between scales contributing to a nonlinear interaction. For a given energy flux through
a scale, the degree to which each scale contributes to the mentioned flux represents an assertion
of locality, [4]. For the interaction to be local, the contribution of highly separated scales should
be small and decrease fast with the increase in separation between k. and k.

Looking at the plot of IT;; (k,|k.) /T1(k.) as a function of k,/k. and Il (k,|k.)/TI(k.) as a
function of k./k, will reveal information related to the locality characteristic of the non-linear
terms. The collapse of the locality functions dependence on k), for different values of k. repre-
sents a clear sign of self-similarity of the nonlinear interactions, which implies a dominance of
the nonlinear terms in regard to the linear ones. Moreover, if the mentioned collapse exhibits a
slope (in a log-log scale), then a state of asymptotic locality can be inferred, i.e. the nonlinear
interactions saturate dynamically to the same level, no mater how large the turbulence level
becomes. From our simulations, Figure 3, none of these two behaviors can be clearly observed.

Theoretically, a (k,/ kc)is/ 6 exponent for the IR and UV locality functions can be determined

for an infinitely long inertial range, using scaling arguments similar to [5] and the fields scalings
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Figure 3: The IR and UV locality functions, displayed for selected cutoff wavenumbers identi-
fied by the boundary index c. Dashed lines equal or proportional to different power laws of the

abscissae are displayed for reference.

provided by [6]. Although an asymptotic 5/6 scaling of the IR and UV locality functions seems
plausible and would indicate a more local interaction compared to magnetohydrodynamic tur-
bulence (2/3) but more non-local compared to fluid turbulence (4/3), these values can not be
clearly identified from our simulations. First, we need to consider that the theoretical 5/6 ex-
ponent is found in the limit of an infinite inertial range, an ansatz not verified in any range for
our GK turbulence simulation. In spite of the local energy cascade [6, 7], due to dissipation,
the interaction of a given scale with smaller ones will be strongly damped, increasing the scal-
ing of the UV locality functions. The same scale will itself be damped compared to the larger
scales, decreasing the IR locality exponent. An effective non-local IR contribution signifies a
dependence of GK turbulence on the type of instability driving it, while a stronger local UV de-
picts an insensitivity of GK’s large scales on the small scales and therefore the type of collision

mechanism employed.
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