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An analytic description of the boundary layer of a weakly ionized gas discharge as

a whole single unit does not turn out well due to its mathematical difficulties. That

is why the plasma-wall transition (PWT) layer is usually split into two sublayers: a

quasineutral presheath (with the characteristic scale length L - the collision mean-free

path) and the Debye sheath (with the scale-length λD - the electron Debye length). This

subdivision, being valid only in the asymptotic two-scale limit, λD/L→ 0, allows to

investigate the presheath and the sheath separately. Such a simplification calls for a

detailed and in-depth study of the sublayers bearing in mind their further matching.

In most publications on the weakly ionized PWT layer the neutral gas is assumed to be

cold, which seems to be an over-simplification of the problem [1]. This paper presents

kinetic theory of the sheath in the Tonks-Langmuir (T&L) model of the PWT layer with

hot neutrals. Ion kinetics is governed by the ionization process due to electron-neutral

particle collisions. The plasma consisting of Boltzmann distributed electrons and singly

charged ions is in contact with a negative absorbing wall. Dependencies of the electric

potential shape and its characteristics in the sheath on the neutrals’ temperature are

investigated for the first time.

The ions born at the neutrals’ ionization acquire the negative velocity only due to

the velocity spreading of the neutrals’ velocity distribution function (VDF). The Debye

sheath (DS) is collisionless. It means that there are no ions with the negative velocities.

In the DS the space charge effect can no longer be neglected. The ion VDF in the DS can

be found from the homogeneous kinetic equation. Hence the ion distribution function

in the DS f̄i(E) can depend only on the total ion energy E = mv2/2+eΦ. The explicit form

of this dependence can be found from the coincidence condition of f̄i(E) at the sheath
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edge x = xs with the ion distribution function in the presheath. The result reads

f̄s(v,Φ) = f̄s(v2−χ) = 2B̄
n0√
2cs

−Φs∫

0

dΦ′′
dx0(Φ′′)

dΦ′′
exp(τ

√
v2−χ−Φ′′)

√
v2−χ−Φ′′

×exp
[
Φs +Φ′′

]
H(v2−χ−Φ′′) .

(1)

Here Φs < 0, Φ < 0 and χ = Φs −Φ ≥ 0. It should be mentioned that the necessary sheath

edge condition f̄s(Φs,v = 0) = 0 is fulfilled and from Eq. (1) it follows that f̄s(v,Φ) = 0 at

v2 ≤ χ. H(x) is Heaviside step function. Using the sheath scale (' λD) and introducing

corresponding coordinates we can write the Poisson equation in the form

d2χ

dξ2 = ni−ne , (2)

where ξ = (z− zr)/ε and χ = Φs−Φ . zr is an arbitrary reference point allowing suitable

choice of origin for the sheath coordinate ξ. Further we’ll follow again the procedure

given in Ref. [2]. For the ion and electron densities we find

ni(χ) =
1
2

∫ ∞

0

dy√
χ+ y

f̄s(y) , ne(χ) = exp(Φs−χ) . (3)

After integration from Eq. (2) we obtain

ξ−ξw =

χ∫

χw

dψ
√

2[W(ψ) + exp(Φs−ψ)−exp(Φs)]
, (4)

where ξw is the wall coordinate, χw the relative potential at the wall, and

W(ψ) =

∫ ∞

0
dy f̄s(y)[

√
ψ+ y− √y] . (5)

The smallness of the relative potential in the vicinity of the sheath edge χ� 1, allows us

to find the analytic expression for the potential shape there. Obviously, the numerical

solution of Eq. (4) must coincide with this analytic expression in the region indicated.

We start with an expansion of the ion and electron densities [3]

d2χ

dξ2 =
∑

ν

cνχν/2 , where cν =



a2n− bn exp(Φs) for ν = 2n ,

a2n+1 for ν = 2n + 1 ,
(6)

a2n =
(−1)n

2n!

∫ ∞

0

dy√
y

dn f̄s(y)
dyn , a2n+1 =

π(−1)n+1

2(n + 1
2 )!

dn f̄s(y)
dyn

∣∣∣∣∣∣
y=0

, bn =
(−1)n

n!
. (7)

For coefficients cν we have: (i) according to the quasineutrality condition at the sheath

edge c0 = 1
2

∫ ∞
0

dy√
y f̄s(y)−exp(Φs) = 0 ; (ii) due to boundary condition for the VDF at the
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Figure 1: Coefficient c3(Tn).
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Figure 2: The floating wall potential for hy-

drogen and argon.

sheath edge c1 =− f̄s(0) = 0 ; (iii) the Bohm criterion gives c2 = 0. Neglecting higher order

terms from Eq. (6) we find

ξio = ξ0−2

√
5
c3

1
χ1/4

. (8)

The dependence of the coefficient c3 on the temperature Tn is shown in Fig. 1. The

integration constant ξ0 and its relation to the ξw can be found by comparison of Eq. (8)

with numerical solution of Eq. (4) [see Fig. 3]. It follows that potential drop in sheath

for hydrogen at Tn1 = 3, χw = Φs(Tn1)−Φw(Tn1) = 2.50 and at Tn2 = 10, χw = Φs(Tn2)−
Φw(Tn2) = 2.262 . Hence the comparison of the numerical solution of Eq. (4) for small χ

with Eq. (8) gives

ξ0 = ξw + 3.78 at Tn = 3 and

ξ0 = ξw + 3.11 at Tn = 10 .
(9)

For the floating wall potential we have

Φw = ln
[√

2π

√
me

Mi

∫ Φs

0
dΦ

dx0

dΦ
exp(Φ)

]
, (10)

which is dependent on the gas used as shown in Fig. 2. It follows that potential drop

in sheath for hydrogen at Tn1 = 3, χw = Φs(Tn1)−Φw(Tn1) = 2.50 and at Tn2 = 10 χw =

Φs(Tn2)−Φw(Tn2) = 2.262.

To our knowledge this is the first attempt to study the influence of the ion source

(neutral gas) temperature and fills the gap in the full understanding of the famous T&L

model. This model forms the basis for all the recent investigations of the PWT layer.
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Figure 3: (Color online) Asymptotic (ε = 0) sheath potential variation χ(ξ− ξw) for

various Tn in the hydrogen plasma. Dotted line shows sheath potential variation for

cold (Tn = 0) case (see Ref. [2, Fig 3.]). Dashed lines show the plasma sided expansion

ξio(χ) for Tn = {3,10,20}.
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