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The general formulation of the problem of the plane-parallel symmetric discharge

has been defined and solved with ions born at rest (cold ion-source model) to some

extent, almost one century ago by Tonks and Langmuir [1], in so called two-scale

approach (quasi-neutral plasma and electric field dominated plasma edge modelled

separately from each other). The problem consists of simultaneous finding the electric

field E = −dΦ/dx (or, equivalently, the potential Φ(x) ) and the ion velocity distribution

function (VDF: fi(x,v)) from Poisson and Boltzmann kinetic equations:
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providing the ion source term Si(x,v) is specified and the electron density profile ne(Φ)

(usually Boltzmann-distributed) are known (e - elementary charge, ε0 - vacuum per-

meability, mi,e - ion and electron masses, ni,e - respective densities). Analytic solution to

the problem under the cold-ion source scenario has been found under the assumptions

that the potential profile is monotonic and that the motion of ions is fully determined

by their total energy. The problem with ions created with initial velocities, however, is

so demanding that a reliable numeric solution with a Maxwellian source with arbitrary

ion temperature [2] has been obtained only recently [3], while the analytic solution

hasn’t been expected to be ever done. The first attempt into this direction, on contrary,

appeared recently in Ref. [4] in the form of an apparently explicit expression:
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Φs is the potential at the plasma-sheath boundary, to be either read from exact calcula-

tions of Kos et al. [3] or obtained from a newly found [4] algebraic implicit expression:
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where I0(z) and I1(z) are familiar Bessel functions. Above expressions apply to the

case of the Maxwellian ion source proportional to the local electron density, while

extension to other physical scenarios are referred to in Ref. [5]. The temperatures, po-

tential and energy here are normalised to the electron temperature Te0 in the centre

of the discharge, velocities to the so-called "ion-sound" cs,0 ≡
√

kTe0/mi multiplied by√
2 [3], the coordinate x to the characteristic system length [5] and with other quan-

tities emerging accordingly, while γE = exp(CE) = 1.78107 (with the Euler-Macsheroni

constant CE = 0.57721...). The main parameter of the problem is the normalised neutral

source temperature Tn, while the ion temperature turns out to be a local quantity [3] to

be found from local ion VDF. Unfortunately, in addition to fact that Eq. 3 is not quite

user-friendly, it holds in the limit for rather high ion-source temperatures, as illustrated

in Fig. 1 where we represent sheath edge potential Φs as obtained from Eq. 3, in compar-
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Figure 1: Exact plasma edge potential in comparisons with present explicit semi-analytic

and our "old" implicit approximation

ison with the exact results from refined sheath-edge potential profile investigations [6].

Therefore, instead of it in this work we use our trial expression:

Φs(Tn) ≈ − 1
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which fits exact result much better than Eq. 3 as obvious from Fig. 1. In addition to the

fact that our old "explicit" formula 2 is rather unreliable for Tn ≤ 3 and completely fails

slightly bellow Tn = 1, it contains not-tabulated integrals, so it is not very convenient
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for practical applications. Therefore, in present work we apply the two-point quasi-

fractional approximation (see e.g., Ref. [7]) and use the properties of the electric field

near Φ = 0, and Φ = Φs for constructing our basic result of the present work:

E ≈ − 40
27
√

Tn

√−Φ√
Φ−Φs

(5)

which fits excellently result obtained from Ref. 3 and holds as long as referred to

approximations near Φ = 0, and Φ = Φs hold (i.e., according to Ref [6], for Tn ' 0.06<∞).

In Fig. 2 we show the electric fields obtained with formula 5 in comparison with exact

numerical method for various ion temperatures (note the differences between the ion

source temperature Tn and resulting ion temperature Ti [3] taken in this particular

example at the sheath edge. The error for Ti = 0.42 (Tn = 1) is due to usage of approximate

formula 4, while alternative use of tabulated exact Φs , removes this discrepancy completely

(not shown here). Once E(Φ) is found, the ion VDF can be calculated in a straightforward
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Figure 2: Approximate electric field in comparison with exact results

manner from:

fi(Φ(x),v) =
1√

2πTn

∫

Φ′
Ψ(Φ′)exp[βΦ′]exp[(Φ′−Φ)/Tn]dΦ′× exp(−v2/Tn)

√
v2− (Φ′−Φ)

. (6)

taking into account the singularity of the kernel E(Φ), i.e., in the limits (Φs,Φs + v2/2)

and (Φs,0) for the branch left and right from
√

Φs, respectively. Corresponding fluid

quantities, i.e., moments of ion VDF as fiunctions of the local potential can be then

obtained in a straightforward manner. In Fig. 3 we show the in VDFs at the plasma
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Figure 3: Ion velocity distributions at the plasma edge for various ion-temperatures

edge for illustrating the results which correspond to kernels from Fig. 2. The illustrated

"error" due to use of Eq. 4 can be readily removed via applying exact tabulated Φs

instead. Anyway, the shape of the velocity distribution, which is now trivial to obtain

and make derivatives of it with unlimited precision is of extreme importance for further

work on the plasma sheath problem, in particular for the plasma-sheath matching and

resolving the controversies about the discrepancies between the kinetic and fluid Bohm

criteria standing for more than 60 years opened.
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