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Exact conservation laws for the gyrokinetic Vlasov-Poisson equations can either be derived

from a variational principle by the Noether method [1] or directly if exact invariants for gyro-

center Hamiltonian dynamics are known [2]. We begin our Noether derivation with the non-

canonical gyrocenter phase-space Lagrangian

Γgy ≡
[(e

c
A + p‖ b̂

)
·dX − W dt

]
−
(
Hgy−W

)
dτ, (1)

where W is the extended phase-space energy coordinate and the gyrocenter Hamiltonian is

Hgy(X, p‖,µ, t; Φ1) ≡ µ B+
p2
‖

2m
+ ε e 〈Φ1gc〉. (2)

The gyrocenter Euler-Lagrange equation associated with an arbitrary displacement δX is

e
c

dgyX
dt
×B∗ −

dgy p‖
dt

b̂ − ∇Hgy = 0, (3)

where B∗ ≡ B+ (p‖c/e) ∇× b̂ and the gyrocenter canonical momentum is pgy ≡ (e/c)A+

p‖ b̂≡ (e/c)A∗, from which we obtain the Hamilton equation for the canonical momentum [1]

dgypgy

dt
= − ∇Hgy +

e
c

∇A∗ ·
dgyX

dt
. (4)

In axisymmetric tokamak geometry, the magnetic vector potential is A≡−ψ ∇ϕ +Ψ(ψ)∇ϑ ,

so that the magnetic field B≡∇ϕ×∇ψ+q(ψ)∇ψ×∇ϑ yields the identity ∇ψ ≡B×∂X/∂ϕ .

We now derive the Hamilton equation for the toroidal canonical gyrocenter momentum

pgyϕ ≡
∂X
∂ϕ
·pgy = − e

c
ψ + p‖ bϕ , (5)

where bϕ ≡ b̂ ·∂x/∂ϕ denotes the covariant toroidal component of the magnetic unit vector.

By taking the toroidal projection of the gyrocenter Euler-Lagrange equation (3), we obtain [1]

dgy pgyϕ/dt ≡−∂Hgy/∂ϕ , where we used the identity

∂C
∂ϕ

+ ∇

(
∂x
∂ϕ

)
·C =

∂C
∂ϕ

+ C× ẑ ≡ 0, (6)

which is valid for an arbitrary vector field C in axisymmetric tokamak geometry.
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The truncated gyrokinetic Vlasov-Poisson equations are derived from the action functional

Agy =
∫

x4

(
ε2 |E1|2

8π
− |B|

2

8π

)
+

ε2

2

∫
z7

F0 e
〈

£1 Φ1gc

〉
−
∫

Z8
Fgy(Z) Hgy(Z; Φ1), (7)

where summation over particle species is implied, with the extended gyrocenter Hamiltonian

Hgy ≡ Hgy−W and the extended gyrocenter Vlasov distribution Fgy ≡ cδ (W −Hgy) F . In

(7), the gyrocenter Lie derivative is £1Φ1gc ≡ (e/Ω) {Φ̃1gc, Φ1gc}gc, where Φ̃1gc ≡
∫

φ̃1gc dθ

and { , }gc is the guiding-center Poisson bracket. The gyrokinetic variational principle δAgy ≡∫
δLgy d4x = 0 introduces the variation of the gyrokinetic Lagrangian density

δLgy =−ε δΦ1

[
e
∫

z6

(
〈δ 3

gc〉 F− ε F0

〈
£1 δ

3
gc

〉)]
+

ε2

4π
(δE1 ·E1)−

∫
δFgy Hgy d4 p, (8)

where δFgy ≡ {Sgy, Fgy}gc is generated by the canonical generating function Sgy and δE1 ≡

−∇δΦ1. From the variational principle, we obtain the gyrokinetic extended Vlasov equation

{Fgy, Hgy}gc = 0, which, when integrated over W , yields the gyrocenter Vlasov equation [1]

∂F
∂ t

+
dgyX

dt
·∇F +

dgy p‖
dt

∂F
∂ p‖

= 0. (9)

We also obtain the gyrokinetic Poisson equation

ε ∇ ·E1

4π
= e

∫
z6

(
F〈δ 3

gc〉 − ε F0

〈
£1 δ

3
gc

〉)
≡ ρ − ∇ ·P, (10)

where ρ denotes the gyrocenter charge density and the gyrokinetic polarization

P =
b̂

Ω
×
[∫

F
(

e
dgyX

dt

)
d3 p
]
≡ Pgc + Pgy (11)

includes contributions from the guiding-center polarization (from the guiding-center velocity

dgcX/dt) and the gyrocenter polatization (from the perturbed E×B velocity ε (cb̂/B)×∇〈Φ1gc〉).

By inserting (9)-(10) into (8), we obtain the gyrokinetic Noether equation δLgy ≡ ∂Λ/∂ t +

∇ ·Γ, where the Noether fields are

Λ ≡
∫

Sgy Fgy d4 p and Γ ≡ − ε2 δΦ1

4π
E1 +

∫ (
Sgy Fgy

) dgyX
dt

d4 p. (12)

The gyrokinetic Noether equation is now used to derive the gyrokinetic toroidal angular-momentum

conservation law. First, when considering arbitrary infinitesimal displacements δx, we obtain

the Noether momentum equation [1]

∂P
∂ t

+ ∇ ·Πgy = −
∫

F
(

∇Hgy−
e
c

∇A∗ ·
dgyX

dt

)
, (13)

where

P =
∫

F pgy d3 p and Πgy =
∫

F
dgyX

dt
pgy d3 p. (14)
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We note that (13) can also be obtained as the gyrocenter-Vlasov moment of (4). Second, we

consider the infinitesimal toroidal rotation δx≡ δϕ ∂x/∂ϕ = δϕ ẑ×x. The toroidal projection

of (13) yields the gyrokinetic toroidal angular-momentum equation [1, 2]

∂Pϕ

∂ t
+ ∇ ·Qϕ = − ε e

∫
F

∂ 〈Φ1gc〉
∂ϕ

d3 p, (15)

where

Pϕ ≡ P · ∂x
∂ϕ

=
∫

F pgyϕ d3 p and Qϕ ≡ Πgy ·
∂x
∂ϕ

=
∫

F
dgyX

dt
pgyϕ d3 p,

and we used the identity (6) to obtain

(∇ ·Πgy) ·
∂x
∂ϕ

= ∇ ·
(

Πgy ·
∂x
∂ϕ

)
− Π

>
gy : ∇

(
∂x
∂ϕ

)
= ∇ ·Qϕ +

∫
F
(

e
c

∂A∗

∂ϕ
·
dgyX

dt

)
.

Third, we introduce the operation of magnetic-surface average J · · · K≡ V −1 ∮ (· · ·) J dϑ dϕ ,

with the magnetic–coordinate (ψ,θ ,ϕ) Jacobian J ≡ (∇ψ×∇θ ·∇ϕ)−1 and V ≡
∮

J dϑ dϕ .

Next, we introduce the gyrokinetic parallel-toroidal momentum

P‖ϕ ≡ Pϕ +
ψ

c
ρ =

(∫
F p‖ d3 p

)
bϕ , (16)

and obtain the surface-averaged gyrokinetic parallel-toroidal momentum equation

∂ JP‖ϕK
∂ t

= − 1
V

∂

∂ψ

(
V

q
Qψ

ϕ

y)
+

ψ

c
∂ JρK

∂ t
− ε e

s∫
F

∂ 〈Φ1gc〉
∂ϕ

d3 p
{
, (17)

where

JQψ

ϕ K =

s∫
F

dgyψ

dt
pgyϕ d3 p

{
≡ JQψ

‖ϕK − ψ

c
J∇ψ ·JK,

and J∇ψ ·JK≡ e J
∫

F (dgyψ/dt) d3 pK. Lastly, we use the gyrocenter charge conservation law

∂ JρK
∂ t

= − J∇ ·JK ≡ − 1
V

∂

∂ψ
(V J∇ψ ·JK) , (18)

so that (17) becomes

∂ JP‖ϕK
∂ t

= − 1
V

∂

∂ψ

(
V

r
Qψ

‖ϕ

z)
+ e

s∫
F
(

1
c

dgyψ

dt
− ε

∂ 〈Φ1gc〉
∂ϕ

)
d3 p

{
(19)

where c−1 dgyψ/dt− ε ∂ 〈Φ1gc〉/∂ϕ represents the gyrocenter toroidal electric field. If we now

use the gyrokinetic quasineutrality condition ρ ≡ ∇ ·P, the gyrocenter charge conservation law

(18) becomes (with Pψ ≡ ∇ψ ·P)

∂ JρK
∂ t

≡
s

∇ · ∂P
∂ t

{
=

1
V

∂

∂ψ

(
V

∂ JPψK
∂ t

)
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which implies the gyrocenter ambipolarity condition JJψ

physK≡ J(∂Pψ/∂ t)+∇ψ ·JK≡ 0, where

the magnetization-current contribution vanishes since J∇ψ ·∇×MK= J∇ · (M×∇ψ)K≡ 0. The

parallel-toroidal momentum equation (19) thus becomes

∂

∂ t

(
JP‖ϕK+

1
c

JPψK
)

+
1
V

∂

∂ψ

(
V JQψ

‖ϕK
)

= − ε e
s∫

F
∂ 〈Φ1gc〉

∂ϕ
d3 p

{
. (20)

Here, the total toroidal-momentum density JP‖ϕK+ c−1 JPψK is derived from the gyrocenter

Vlasov moment of the toroidal gyrocenter velocity

∂X
∂ϕ
·m

dgyX
dt
≡ mR2 dgyϕ

dt
= p‖ bϕ −

∇ψ

BΩ
·

(
µ ∇B +

p2
‖

m
b̂ ·∇b̂ + ε e∇〈Φ1gc〉

)
,

where the first term contributes to JP‖ϕK while the second set of terms contribute to the radial

gyrokinetic polarization JPψK ≡ JPψ
gcK+ ε JPψ

gyK. As our last step, we perform a guiding-

center multipole expansion: ∂ 〈Φ1gc〉/∂ϕ ≡ ∂Φ1/∂ϕ +〈ρgc〉 ·∇(∂Φ1/∂ϕ)+ · · · so that we find

e
∫

F
∂ 〈Φ1gc〉

∂ϕ
d3 p'

(
ρgy− ∇ ·Pgc

)
∂Φ1

∂ϕ
+∇ ·

(
Pgc

∂Φ1

∂ϕ

)
= ε
(
∇ ·Pgy

) ∂Φ1

∂ϕ
+∇ ·

(
Pgc

∂Φ1

∂ϕ

)
,

where we used the gyrokinetic quasineutrality condition ρgy−∇ ·Pgc = ε ∇ ·Pgy. Hence, the

parallel-toroidal momentum equation (20) becomes

∂

∂ t

s
P‖ϕ +

1
c

Pψ

{
= − 1

V

∂

∂ψ

(
V

s
Qψ

‖ϕ + ε Pψ
gc

∂Φ1

∂ϕ

{)
− ε

2
s(

∇ ·Pgy
) ∂Φ1

∂ϕ

{
. (21)

We note that, in the zero-Larmor-radius approximation Pgy ' (mnc2/B2) ∇⊥Φ1, we find
s(

∇ ·Pgy
) ∂Φ1

∂ϕ

{
'

s
∇ ·
(
Pgy

∂Φ1

∂ϕ

)
− ∂

∂ϕ

(
mnc2

2 B2 |∇⊥Φ1|2
){

=
1
V

∂

∂ψ

(
V

s
Pψ

gy
∂Φ1

∂ϕ

{)
,

so that (21) becomes the gyrokinetic toroidal angular-momentum conservation law for the trun-

cated gyrokinetic Vlasov-Poisson equations (compare with equation 98 of [2])

∂

∂ t

s
P‖ϕ +

1
c

Pψ

{
= − 1

V

∂

∂ψ

(
V

s
Qψ

‖ϕ + ε Pψ ∂Φ1

∂ϕ

{)
, (22)

which includes guiding-center and gyrocenter polarization effects.
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