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Exact conservation laws for the gyrokinetic Vlasov-Poisson equations can either be derived
from a variational principle by the Noether method [1] or directly if exact invariants for gyro-
center Hamiltonian dynamics are known [2]. We begin our Noether derivation with the non-

canonical gyrocenter phase-space Lagrangian
14 A~
Ty = [(EA +py b) dX — Wdt} — (Hyy —W) dr, (1)

where W is the extended phase-space energy coordinate and the gyrocenter Hamiltonian is

2

p
Hyy(X, |, 11,15 D7) = u3+% + ee (D). )

The gyrocenter Euler-Lagrange equation associated with an arbitrary displacement 6X is

e dyX .  dyP| -

-—=—xB"— —b —-VH,, =0 3
¢ di dt & ’ ©)
where B* =B + (p|c/e) V x b and the gyrocenter canonical momentum is Pey = (e/c) A+

P| b= (e/c)A*, from which we obtain the Hamilton equation for the canonical momentum [1]

dgyPgy e
oPY _  VH, + SVA*
dt o T c

oy 4

7 4)
In axisymmetric tokamak geometry, the magnetic vector potential is A = —y Ve +¥(y) VY,
so that the magnetic field B= V@ x Vy+¢q(y) Vy x V9 yields the identity Vyy =B x dX/d ¢.

We now derive the Hamilton equation for the toroidal canonical gyrocenter momentum

dX e
Pgyp = %'pgy =V + P|| b, (%)
where by = b-ox /d@ denotes the covariant toroidal component of the magnetic unit vector.
By taking the toroidal projection of the gyrocenter Euler-Lagrange equation (3), we obtain [1]
deyPeye/dt = —dHgy/d @, where we used the identity
dC ox aC
— +V(—] C==—+4+Cxz2=0 6
8(p+ (aq)) 8(p+ X2z ; (6)

which is valid for an arbitrary vector field C in axisymmetric tokamak geometry.
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The truncated gyrokinetic Vlasov-Poisson equations are derived from the action functional

e’|Ei|* [B] e’ 7
Ay = /4( k- 8n) + E/Z7F0e<£1 ¢1gc> - /Zg Fay(Z) My (Z; D)), (T)

where summation over particle species is implied, with the extended gyrocenter Hamiltonian
gy = Hyy — W and the extended gyrocenter Vlasov distribution .Fgy = c6(W — Hgy) F. In
(7), the gyrocenter Lie derivative is £ Py = (e/Q) {&)1gc, Pgc }oc, Where &Dlgc = 51gcd9
and { , }gc is the guiding-center Poisson bracket. The gyrokinetic variational principle 8.7, =

[ 8 %4y d*x =0 introduces the variation of the gyrokinetic Lagrangian density
2
€
5Ly = —£5, {e/zﬁ (630 F—e Fo (£ 5§C>)] + 2 (5K Ey) —/ 8Ty Aoy d'p, (8)
where 6. 74y = { oy, Fey}ec is generated by the canonical generating function .,y and 0E; =
—Vo®,. From the variational principle, we obtain the gyrokinetic extended Vlasov equation

{Zay, Hay}eec =0, which, when integrated over W, yields the gyrocenter Vlasov equation [1]

— 4+ =—.VF — = 0. 9
dt + dt + dt  dp ©)
We also obtain the gyrokinetic Poisson equation
eV-E;
= e/z6 (F<6g3c> —eR <£1 6§C>) = p —V.P, (10)
where p denotes the gyrocenter charge density and the gyrokinetic polarization
b dgyX
Pzﬁx[/F(e%)fp}ngc—klP’gy (11)

includes contributions from the guiding-center polarization (from the guiding-center velocity
dycX/dt) and the gyrocenter polatization (from the perturbed E x B velocity & (cB/ B) x V(®14)).

By inserting (9)-(10) into (8), we obtain the gyrokinetic Noether equation 6%,y = JA/dt +
V .-T', where the Noether fields are

2
0P deyX
A= /ygy Fgyd'p and T = — o LE, + / (ygy ﬁgy) %d“p. (12)

The gyrokinetic Noether equation is now used to derive the gyrokinetic toroidal angular-momentum
conservation law. First, when considering arbitrary infinitesimal displacements 0x, we obtain

the Noether momentum equation [1]

JoP

dgyX
o VTl = - /F (VHgy—SVA*-gL), (13)

where

d
P = /Fpgyd3p and Tl = /FTpgyd3p. (14)
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We note that (13) can also be obtained as the gyrocenter-Vlasov moment of (4). Second, we
consider the infinitesimal toroidal rotation dx = ¢ dx/d@ = § 9z x x. The toroidal projection

of (13) yields the gyrokinetic toroidal angular-momentum equation [1, 2]

an, a<¢'1gc> 3
—? 4 v. = — F ———=* 1
8t + Q(P 86/ a(p d D, ( 5)
where
ax d yX

and we used the identity (6) to obtain
ox ax T ox e JA™ dgX
V) o =V (M) - v (35) = Voo s [P (555

Third, we introduce the operation of magnetic-surface average [ --- ] =7 "' § (---) ¢ dvdo,
with the magnetic—coordinate (y, 8, @) Jacobian ¢ = (Vy x V0 Vo) land ¥ =§ 7Zddde.

Next, we introduce the gyrokinetic parallel-toroidal momentum

and obtain the surface-averaged gyrokinetic parallel-toroidal momentum equation

Pl 1 9 " v d[p] I(Pige) 1
T =y g (1 108) + YR e [[ P AT ]

where

dey v
Voo gy 3 — _ .
Q9] = II/ F ar Peve d pﬂ [[QH(p]] p [Vy-JI,
and [Vy-J] = e [[ F (dgyy/dt) d°p]. Lastly, we use the gyrocenter charge conservation law

a[p] 1 d
5 = —[V]] = —7W/(VHVW'JH)7 (18)

so that (17) becomes

3[[PH¢]] B 1 0 ldeyy a<(1)1gC> 3
or __VWJ( I|</> H/F(c i J¢ )dpﬂ (19)

where ¢! dgy y/dt — € 9(P1g) /0@ represents the gyrocenter toroidal electric field. If we now
use the gyrokinetic quasineutrality condition p = V - P, the gyrocenter charge conservation law
(18) becomes (with Z¥Y = Vy - P)

W 2] - 5 0%5)
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which implies the gyrocenter ambipolarity condition [J. phys]] =[(022Y/dt)+Vy-J] =0, where
the magnetization-current contribution vanishes since [Vy -V xM] =[V- (M x Vy)] =0. The

parallel-toroidal momentum equation (19) thus becomes

d 1 1 0 PICPS)

<z A - _ 9{Pige) 13

ot ([[P||<p]]+ c £4 ]]) + ¥V oy (V [[QIVP ) CEe ﬂ/ F 2X0) d pﬂ ' 20)
Here, the total toroidal-momentum density [Pq] + ¢~ [£2Y] is derived from the gyrocenter

Vlasov moment of the toroidal gyrocenter velocity

X dgyX 5 doy®

B2 = mR* B = p by
a(pmdt " dt Pi

BS"Z’ (/.LVB + s b-Vb -+ eev<c1>1gc>> ,
where the first term contributes to [P,] while the second set of terms contribute to the radial
gyrokinetic polarization [2V] = [Pg.] + € [Pey]- As our last step, we perform a guiding-

center multipole expansion: J(®gc)/dQ =P /@ + (py.) - V(dP1 /I )+ so that we find

3 (Drge) I, 9\ 9%, 9%,
e/FTd p= <pgy— V']P)gc) W—FV (chw> —8(V'ng) W"’V (chﬁ) ,

where we used the gyrokinetic quasineutrality condition pgy — V-Pge = €V -Pgy. Hence, the

parallel-toroidal momentum equation (20) becomes
d 1 1 d P P
z Y| = - 2 v O g2 : 271
3 |[P|(,, +-Z ﬂ = “//aw( HQ"" + € Pye 90 ﬂ) £ H(V Pgy) 70 ﬂ (1)

We note that, in the zero-Larmor-radius approximation Pgy ~ (mnc?/B*) V | &y, we find

9] fv. (p 9P\ _ 9 (mnc N _ 19 y 91
H(V Pey) 8¢ﬂ_|lv (ng8¢> 8¢<2Bz| * 1')}}_7/8111(% Il‘@gy 8@“)’

so that (21) becomes the gyrokinetic toroidal angular-momentum conservation law for the trun-

cated gyrokinetic Vlasov-Poisson equations (compare with equation 98 of [2])

0 1 1 0 861)1
filne o] =5 (o rer 55]), 22

which includes guiding-center and gyrocenter polarization effects.
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