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Ion acceleration during plasma expansion into vacuum was first studied by Gurevich et al.
[1]. Important qualifying step was taken by Mora in Ref. [2] where the ion front was studied
in details. These works considered a semi-infinite plasma. Both of them are widely applied to
laser triggered ion acceleration. However, only ultrathin plasma foils are able to provide high
ion energy [3, 4] that stress a lack of analytical models of expansion of thin plasma layer into a
vacuum. Our work takes a step forward in closing this gap.

Initially homogeneous plasma slab of thickness L with ion charge Ze, mass M, and density
ng is in the region —L/2 < x < L/2. Plasma expansion is governed by the Vlasov equation
for ions with self-consistent field E(x,#) described by the Poisson equation and the electron
density which follows the Boltzmann distribution with given temperature 7. Such a description
is so called kinetic Boltzmann-Vlasov-Poisson (BVP) model [5]. The corresponding system of

equations which describes plasma expansion in a vacuum is:

¥=—0'(x,t), x(0)=x, %(0)=0,

(1)
0" =" exp 7] —nCer), o]y = 0| .=

In Egs.(1) due to a symmetry we consider x > 0 and the following units: L/2 for coordinates,

x; a)p_l, = \/M/47(Ze)?ny for time, t; ny for ion density, n; 47 (Ze)*>no (L/2)* for energies,
(Ze@, ZT or € = M /2). Dimensionless parameter 1¢ describes initial electron depletion of
the target, N¢ = n{/Zng, and can be approximately found: n¢ =1/(14-2T7).

So far solution of Eqgs.(1) was restricted by the numerical simulation (e.g., the PIC algorithm)
because of complicated self-consistent calculation of the ion density n(x,7). The other approxi-
mate way is to apply a model ion density from the following physical arguments. Coulomb ex-
plosion (CE) of plasma slab [6] is relevant to high electron energies (7' > 1). It is accompanied
by homogeneity of the ion density profile: n(x,t) = 1/xy(t), with x;() to be the front position
of expanding ion plasma. On the other hand, weakly heated plasma expands in quasineutral

regime [1]: n(x,1) ~ n°(x,t) = nexp[¢@/T]. By using these asymptotics we may propose a
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simple density fit to generalize known limiting expressions for n(x,¢) to arbitrary 7"

1
xy(t)

n(x,t >0) = {neexp [M] A+

. B}-00x(0) ). @

where 0(x) is the Heaviside step function. The interpolation coefficient A describes smooth
transition from the quasineutral regime to the CE, i.e. A(T — 0) — 1 and A(T — o) — 0. The

coefficient B uniquely follows from A due to the density normalization ( fg Tn(x,t) = 1)

B=1—A+A/20¢T 30 explgy(r)/T], 3)

where @g(7) is the plasma potential at the slab center (x = 0) and () is the potential difference
in a plasma, 6(t) = [@o(t) — @¢(¢)]/T. By choosing the simplest form, A(T) =1/(1+T), one

obtains the following expressions for the field at the ion front:

B 2T5e5/2\/ 14+ 7

Ey

xf T(1—5)+e_57 where @

265/ (T+e*5> VI4T = {1+ \/1 —|—2xf65(T—|—65)/5] -\/T(l —8)+e % (5

The first integral of the front motion equation iy = E with Ey from Eq. (4) provides a quadra-

ture formula for the ion maximum energy

e Se-5/2
emax(xf,T)=2T\/1—|—T/
1 x\/T(1—5)+e_6

In accordance with Ref. [2], the electric field at the ion front £y = 2\/ AnTZno/(2e+ a)[%i 12)

dx. (6)

for the semi-infinite plasma reads (in our dimensionless units):

g T (7
! V2e+1t?

In Fig. 1 we compare numerical and approximate analytical solutions for E¢. Note that, Er = 1
corresponds to the CE regime (7" — o). Whereas analytic solution (4) demonstrates excellent
agreement with the numerical one, the solution (7) deviates from both of them if temperature
does not follow the condition 7" < 1. Exterior to applicability condition, 7" > 1, the solution
(7) unphysically exceeds the maximum possible field which corresponds to the CE [6], EfE =
1. For small electron temperature, 7 < 1, i.e. for small the electron Debye length to the foil
thickness ratio A5,/L < 1, both Eq.(7) and (4) are in close agreement.

One-dimensional approach corresponds to infinite electrostatic energy of a slab. Thus, ion

maximum energy infinitely increases with time. In order to make an adequate estimates we
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Figure 1: Evolution of the electric field at the ion front from Eq.(4) (solid curves) in comparison
with Eq.(7) (dot-dashed lines) and the BVP numerical result with PIC method (solution to
Eqgs.(1), dots).

restrict one-dimensional consideration when a plasma expands at a distance approximately
equal do the radius of the laser focal spot, Rs, [6]. At x > Ry the three-dimensional effects
significantly decrease accelerating fields, so the ions gain the main part of resultant energy

during one-dimensional stage. This is why we introduce "virtual detector", the plane with

coordinate x; = Ry, which registers energy 1025
of the arriving particles. The ion energy at
this "virtual detector" models energy of the
ions at a real detector. For relevant experi- 105

mental conditions with ultrathin foils, which

provide efficient ion acceleration a foil thick-
ness can vary on length scale of tens or hun- 1071 1 10 102

Figure 2: Temperature dependence of the max-

dreds of nanometers [7, 8] and focal spot ra-

dius is of the order of few laser wavelengths. imum ion energy at the detector from Eq.(6)

(solid curve) in comparison with the numerical

BVP result (dots), the energy for CE (eCF =

max

xg — 1) [6] (dashed line), and Eq.(7) (dot-dashed

Hence, typically x; is of a few dozens. Fig-
ure 2 shows the temperature dependence of
the maximum ion energy at the detector at
xg = 20. Our approximate analytic solution curve).
(6) demonstrates good agreement with numerical one over the entire temperature range unlike
Eq.(7) which is applicable only for small values of 7.

Finally, we demonstrate how laser parameters can be introduced in our analytical theory to
derive ion energy dependencies on laser power and spot size. Figure 3 shows dependence of
maximum ion energy per nucleon on laser focal spot radius calculated from Eq.(6) by using
electron temperature scaling [9]: T = mc?(1/ 1+ Agps-a*/2 — 1) and optimum foil thickness
[10, 11]: L =~ (ne/Zng)ad /7. Here a = 0.85V/110-182 is the dimensionless amplitude of a
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laser field with intensity / W/cm? and wavelength A um, A, is the absorbtion coefficient,

and n, is the electron critical density. Note,
that sharp laser-plasma interface facilitates
significant reflection of the light and optimum
target thickness corresponds to plasma rela-
tivistic semi-transparency, i.e. significant part
of laser energy is lost during laser plasma
interaction (A,ps < 1). Pulse length 7 is as-
sumed to be not less than acceleration time,
so that ions reach the "virtual detector" be-
fore the pulse ends and electrons start to cool
down. For given laser power, increase of a
focal spot size decreases an laser intensity
and electron temperature. Correspondingly,

the ion energy decreases. However, focal spot
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Figure 3: Maximum ion energy per nucleon
from the semi-transparent diamond-like carbon
foil of optimum thickness versus laser focal
spot radius for 100 TW and 1 PW laser pulses
(Agbs = 50%).

size increase also increases acceleration length that is favorable for ion energy gain. Competi-

tion between these effects may result in optimum spot size that is seen in Fig. 3 for 1 PW case

near the diffraction limit (R ~ 1um) of the focused laser beam.
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