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Ion acceleration during plasma expansion into vacuum was first studied by Gurevich et al.

[1]. Important qualifying step was taken by Mora in Ref. [2] where the ion front was studied

in details. These works considered a semi-infinite plasma. Both of them are widely applied to

laser triggered ion acceleration. However, only ultrathin plasma foils are able to provide high

ion energy [3, 4] that stress a lack of analytical models of expansion of thin plasma layer into a

vacuum. Our work takes a step forward in closing this gap.

Initially homogeneous plasma slab of thickness L with ion charge Z e, mass M, and density

n0 is in the region −L/2 ≤ x ≤ L/2. Plasma expansion is governed by the Vlasov equation

for ions with self-consistent field E(x, t) described by the Poisson equation and the electron

density which follows the Boltzmann distribution with given temperature T . Such a description

is so called kinetic Boltzmann-Vlasov-Poisson (BVP) model [5]. The corresponding system of

equations which describes plasma expansion in a vacuum is:

ẍ =−ϕ
′(x, t) , x(0) = x0, ẋ(0) = 0 , n(x, t) =

∣∣∣∣∂ x(x0, t)
∂ x0

∣∣∣∣−1

,0 6 x0 6 1

ϕ
′′ = η

e exp
[

ϕ

T

]
−n(x, t) , ϕ

′∣∣
x=0 = ϕ

′∣∣
x=∞

= 0 .
(1)

In Eqs.(1) due to a symmetry we consider x > 0 and the following units: L/2 for coordinates,

x; ω−1
pi

=
√

M/4π(Z e)2 n0 for time, t; n0 for ion density, n; 4π (Z e)2 n0 (L/2)2 for energies,

(Z eϕ , Z T or ε = Mẋ2/2). Dimensionless parameter ηe describes initial electron depletion of

the target, ηe = ne
0/Z n0, and can be approximately found: ηe = 1/(1+2T ).

So far solution of Eqs.(1) was restricted by the numerical simulation (e.g., the PIC algorithm)

because of complicated self-consistent calculation of the ion density n(x, t). The other approxi-

mate way is to apply a model ion density from the following physical arguments. Coulomb ex-

plosion (CE) of plasma slab [6] is relevant to high electron energies (T ≫ 1). It is accompanied

by homogeneity of the ion density profile: n(x, t) = 1/x f (t), with x f (t) to be the front position

of expanding ion plasma. On the other hand, weakly heated plasma expands in quasineutral

regime [1]: n(x, t) ≈ ne(x, t) = ηe exp [ϕ/T ]. By using these asymptotics we may propose a
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simple density fit to generalize known limiting expressions for n(x, t) to arbitrary T :

n(x, t > 0) =
{

η
e exp

[
ϕ(x, t)

T

]
·A+

1
x f (t)

·B
}
·θ(x f (t)− x), (2)

where θ(x) is the Heaviside step function. The interpolation coefficient A describes smooth

transition from the quasineutral regime to the CE, i.e. A(T → 0)→ 1 and A(T → ∞)→ 0. The

coefficient B uniquely follows from A due to the density normalization (
∫ x f

0 n(x, t)≡ 1):

B = 1−A+A
√

2ηe T e−δ (t) exp [ϕ0(t)/T ] , (3)

where ϕ0(t) is the plasma potential at the slab center (x = 0) and δ (t) is the potential difference

in a plasma, δ (t) = [ϕ0(t)−ϕ f (t)]/T . By choosing the simplest form, A(T ) = 1/(1+T ), one

obtains the following expressions for the field at the ion front:

E f =
2T δ e−δ/2

x f

√
1+T

T (1−δ )+ e−δ
, where (4)

2eδ/2
(

T + e−δ

)√
1+T =

[
1+
√

1+2x f eδ (T + e−δ )/δ

]
·
√

T (1−δ )+ e−δ . (5)

The first integral of the front motion equation ẍ f = E f with E f from Eq. (4) provides a quadra-

ture formula for the ion maximum energy

εmax(x f ,T ) = 2T
√

1+T

x f∫
1

δ e−δ/2

x
√

T (1−δ )+ e−δ

dx. (6)

In accordance with Ref. [2], the electric field at the ion front E f = 2
√

4π T Z n0/(2e+ω2
pi

t2)

for the semi-infinite plasma reads (in our dimensionless units):

E[2]
f =

2
√

T√
2e+ t2

. (7)

In Fig. 1 we compare numerical and approximate analytical solutions for E f . Note that, E f = 1

corresponds to the CE regime (T → ∞). Whereas analytic solution (4) demonstrates excellent

agreement with the numerical one, the solution (7) deviates from both of them if temperature

does not follow the condition T � 1. Exterior to applicability condition, T > 1, the solution

(7) unphysically exceeds the maximum possible field which corresponds to the CE [6], ECE
f ≡

1. For small electron temperature, T � 1, i.e. for small the electron Debye length to the foil

thickness ratio λ e
D/L . 1, both Eq.(7) and (4) are in close agreement.

One-dimensional approach corresponds to infinite electrostatic energy of a slab. Thus, ion

maximum energy infinitely increases with time. In order to make an adequate estimates we
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Figure 1: Evolution of the electric field at the ion front from Eq.(4) (solid curves) in comparison

with Eq.(7) (dot-dashed lines) and the BVP numerical result with PIC method (solution to

Eqs.(1), dots).

restrict one-dimensional consideration when a plasma expands at a distance approximately

equal do the radius of the laser focal spot, R f , [6]. At x > R f the three-dimensional effects

significantly decrease accelerating fields, so the ions gain the main part of resultant energy

during one-dimensional stage. This is why we introduce "virtual detector", the plane with
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Figure 2: Temperature dependence of the max-

imum ion energy at the detector from Eq.(6)

(solid curve) in comparison with the numerical

BVP result (dots), the energy for CE (εCE
max =

xd−1) [6] (dashed line), and Eq.(7) (dot-dashed

curve).

coordinate xd = R f , which registers energy

of the arriving particles. The ion energy at

this "virtual detector" models energy of the

ions at a real detector. For relevant experi-

mental conditions with ultrathin foils, which

provide efficient ion acceleration a foil thick-

ness can vary on length scale of tens or hun-

dreds of nanometers [7, 8] and focal spot ra-

dius is of the order of few laser wavelengths.

Hence, typically xd is of a few dozens. Fig-

ure 2 shows the temperature dependence of

the maximum ion energy at the detector at

xd = 20. Our approximate analytic solution

(6) demonstrates good agreement with numerical one over the entire temperature range unlike

Eq.(7) which is applicable only for small values of T .

Finally, we demonstrate how laser parameters can be introduced in our analytical theory to

derive ion energy dependencies on laser power and spot size. Figure 3 shows dependence of

maximum ion energy per nucleon on laser focal spot radius calculated from Eq.(6) by using

electron temperature scaling [9]: T = mc2(
√

1+Aabs ·a2/2− 1) and optimum foil thickness

[10, 11]: L ' (ncr/Zn0)aλ/π . Here a = 0.85
√

I 10−18λ 2 is the dimensionless amplitude of a
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laser field with intensity I W/cm2 and wavelength λ µm, Aabs is the absorbtion coefficient,
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Figure 3: Maximum ion energy per nucleon

from the semi-transparent diamond-like carbon

foil of optimum thickness versus laser focal

spot radius for 100 TW and 1 PW laser pulses

(Aabs = 50%).

and ncr is the electron critical density. Note,

that sharp laser-plasma interface facilitates

significant reflection of the light and optimum

target thickness corresponds to plasma rela-

tivistic semi-transparency, i.e. significant part

of laser energy is lost during laser plasma

interaction (Aabs < 1). Pulse length τ is as-

sumed to be not less than acceleration time,

so that ions reach the "virtual detector" be-

fore the pulse ends and electrons start to cool

down. For given laser power, increase of a

focal spot size decreases an laser intensity

and electron temperature. Correspondingly,

the ion energy decreases. However, focal spot

size increase also increases acceleration length that is favorable for ion energy gain. Competi-

tion between these effects may result in optimum spot size that is seen in Fig. 3 for 1 PW case

near the diffraction limit (R f ' 1µm) of the focused laser beam.
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