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Abstract

The Ion Acoustic Wave (IAW) decay instability has been shown in theoretical studies to be
an important saturation mechanism for Stimulated Brillouin Scatter (SBS) [1, 2, 3], possibly
relevant to Inertial Confinement Fusion (ICF) experiments [4]. Previous detailed studies [2, 3]
have used Particle-In-Cell (PIC) simulations to explore the decay process. These studies were
limited by low resolution in k-space (8 simulated fundamental wavelengths) and the inherently
high noise of PIC methods which may seed instabilities at a level such that the nature of the
instability is obscured. We present results of a study of the 1D parametric instability of [AWs
using the 1D1V Vlasov code SAPRISTI [5].

Utilizing extremely low noise (numerical double precision) and high resolution in k—space
(64 simulated fundamental wavelengths), we show for the first time the fine structure of the
growth of IAWSs below the fundamental wave and indeed between each of its harmonics up to the
64" harmonic. Theoretical work [6] has previously suggested that the nature of the instability
should be sensitive to the sign of the mismatch in frequency between the pump IAW and its
decay waves arising due to the nonlinear dispersion of IAWs and nonlinear frequency shifts
(both fluid and kinetic). This sensitivity is investigated by means of varying Z7, /T; over a broad

range of values.

Results and discussion

The interaction of particles resonant with a plasma wave in a Maxwellian distribution may
rapidly deplete the wave field energy via Landau damping. In a one-dimensional (1D) peri-
odic system, IAWs may evolve into an indefinitely-stable Bernstein-Green-Kruskal (BGK)-
like mode [7] via trapping of electrons [8] and ions with velocities near the phase velocity
of the wave, vy, in both single [5] and multi-species plasmas [9]. In a 1D periodic system of
length L equal to the IAW wavelength A, this wave is stable to the growth of sidebands via the
Trapped Particle Instability (TPI) [10] and decay into longer wavelengths via Two Ion-wave

Decay (TID). However, for system lengths greater than A, the wave may become unstable.
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Figure 1: Sensitivity of the stability of the wave to

switched off and the wave allowed to prop-  she system length. The oscillations are related to

agate freely. In Fig. 1, the transition from the bounce frequency of trapped particles.

stability to instability as L is increased is evident. The evolution in time of the field energy of
the wave converges quickly as A is increased. In this figure and unless explicitly stated oth-
erwise, (k/lDe)2 = 0.1 and ZT,/T; = 11, where Ap, is the electron Debye length, Z is the ion
charge number, and 7, and 7; are the electron and ion temperatures, respectively. The electric
field E is normalised such that £ = eAp.E /T, and the potential ¢ such that £ = —Ap,V§.
Three cases are presented in Fig. 2, differing only in the amplitude to which the IAW was
driven before the driver was switched off. In each, L = 64A. Analysis of the Fourier k spectrum
shows the rapid establishment of the harmonic spectrum in each case, which we label as k,, n =
1, 2, ..., where n = 1 is the 1% harmonic (the range in Fig. 2 is restricted to 0 < kAp, <
0.66). A threshold for instability is observed in the potential amplitude ¢: below ¢ ~ 0.01, no
subharmonic growth is observed (see Fig. 2a), while above this threshold, the wave is unstable
(see Figs. 2b,c). In all cases where subharmonic growth is observed, the fastest growing wave
number lies at or close to k, 1. Growth up to n = 64 is observed (spatial resolution Ax =
A /128), and the growth rate is constant to good approximation across all k,,_ /2 (see Fig. 3a).
Preferred decay to ky ) is an established signature feature of TID in experiments, simulations
and theoretical treatments, distinct from TPI where k of the fastest growing mode (and its asso-

ciated growth rate ¥) is a function of ¢ [10, 11]. In the 3-wave fluid model of TID elaborated
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Figure 2: Evolution of the wave Fourier content (a) just below, (b) just above, and (c) signifi-
cantly above the potential amplitude threshold for the TID instability.
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by Karttunen et al. [1] in which the dispersion of the IAW is linear and nonlinear frequency
shifts due to trapping or harmonic generation are ignored (the simplest possible model of TID),
a threshold for TID is expected which scales with the square root of the product of the damping
rates of the daughter waves.

Assuming applicability of this simple
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Figure 3: (a) Growth rate as a function of har-

monic index n. (b) Nonlinear frequency and (c)
tion but lie close to vy, since (kiApe)* =0.1 growth rate of the ky j, mode as a function of ¢,.

and the dispersion relation is near linear.

are determined by the IAW dispersion rela-

Consequently, a flattening in the distribution function near vy due to the comparatively large
fundamental wave amplitude should reduce also the Landau damping rate of the daughter
waves before and after coupling to the fundamental IAW. The calculated half-widths in ve-
locity of the flattened region of the distribution functions for electrons and ions are given by
Av;/vj = 2|q;d1/Tj|'/?, where q; and T; are the charge and temperature of species j (j = e
or i). At ¢~) = 0.005, Av, /v = 0.14 and Avj/v,e = 3.2 x 1073, These values are significantly
greater than the offset of v];,l/ ? from v’(; when not assuming linear dispersion, for which one
finds Avy = v]q{)] 2 _ v’(; = 6.4 x 107* v;,. A reduction of the threshold from the value obtained
using the model assuming linear Landau damping is therefore expected in this case.

The nonlinear frequency shift of the IAW is shown as a function of ¢ in Fig. 3b. The analytic
curve is obtained by calculating the shift due to trapping in the limit of adiabatic electron and ion
excitation [12, 5]. In this regime, the positive electron contribution to the nonlinear frequency
shift is greater than the negative ion contribution, thus the frequency shift is positive for all ¢.
At higher ¢, harmonics increase the nonlinearity of the mode both directly, via quadratically
coupling harmonics, and indirectly through modifying the shape of the potential that traps par-

ticles [5]. The growth rate ¥, of the k; , mode (although, as discussed previously, this rate
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is constant to good approximation across ki) is shown as a function of ¢ in Fig. 3c. The
linear scaling of the growth rate with ¢, in addition to the close agreement with the 3-wave
TID model elaborated by Karttunen et al. [1], is clear evidence that subharmonic growth in this
regime should be attributed to TID (rather than, for example, TPI). The discrepancy between the
3-wave model and the simulation results coincides with the growth of the nonlinear frequency
shift in Fig. 3b, but also harmonics. Results across ZT,/T; < 50 exhibit remarkably little sensi-
tivity to ZT,/T;; the near-linear scaling of y; with ¢ is unchanged even at ZT,/T; = 4, where the
ions provide the dominant contribution to an overall negative nonlinear frequency shift. How-
ever, at ZT,/T; = 50, the growth rate appears to scale as ¢ where m ~ 2, consistent with the
so-called H2-instability derived by Pesme er al. [6], while still maximal very near k, 1 /5.

The application of a Vlasov code with a high number of simulated wavelengths has allowed
for new insights into the nature of the TID instability in 1D and, for the first time, precise mea-
surement of the associated growth rates. This instability has previously been shown in PIC simu-
lations to occur more readily in two-dimensional systems due to more easily achieved matching
conditions between the fundamental and decay waves [2]. Further study into the nature of the
decay instability in two dimensions using the 2D+2V Vlasove code LOKI will follow.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Labo-
ratory Research and Development Program at LLNL under project tracking code 12-ERD-061.
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