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One of the major concerns for the next generation tokamaks and for the future fusion reactors
is the exhaust of heat and particles. This process controls the plasma flow from the core towards
the first wall and the divertor, and determines the longevity of the plasma facing components
as well as the overall performance of the machine. The physics of the exhaust is regulated by
the narrow region of plasma known as the Scrape-Off Layer (SOL), where field lines do not
close on themselves, but impinge on solid surfaces. Due to the presence of open field lines, the
radial width of the SOL is determined by the balance between the parallel and the perpendicular
transport. In L-mode, the latter is caused by turbulence, and in particular by coherent structures
(called filaments or blobs) generated inside the last closed flux surface and expelled into the
SOL. The SOL width is a meaningful quantity as it determines the wetted surface on the divertor
target, over which the power exhausted from the core is deposited. In other words, it determines
the typical decay length of particles and energy outside the separatrix.

We studied the perpendicular transport at the outer midplane using a simplified interchange
model which allows to reproduce the blob dynamics in the SOL. In particular, we performed a
systematic numerical campaign with the code ESEL [1] in order to determine the power decay
length for different plasma regimes. We then applied regression analysis in order to extract
scaling laws for the SOL width from our large database of L-mode turbulence simulations.

The model used is based on 2D drift-fluid equations describing the evolution of the plasma

density, n, electron temperature, 7', and vorticity, U:
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Here, Q = Vi(p, where ¢ is the electrostatic potential, C is a curvature operator responsible
for the interchange dynamics, the brackets are standard Poisson brackets used to describe the
advection. In addition, the inverse of the magnetic field B~! ~ 1 +¢& + (p;/R)x, where € is the
inverse aspect ratio, p; is the ion sound Larmor radius, R is the major radius and x is the "radial"

coordinate. The equations are solved in a drift plane ideally located at the outer midplane. The
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parallel dynamics is not solved self-consistently, but it is represented by simplified loss terms
on the left-hand side of Egs.1-3. All the quantities are dimensionless as Bohm normalization
was applied to the equations. More details about the model are discussed in [1, 2].

Note that once the boundary conditions (described in [2]) are fixed, the solution of Egs.1-3
is uniquely determined by the seven dimensionless parameters that appear in the equations.

These are the machine inverse aspect ratio, €, the inter-
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change drive (the curvature operator is proportional to
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it), ps/R, the particle and thermal diffusivity, D and y, A
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term, ¥, = Xo and the temperature parallel loss term, \//\ \/
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Y. These parameters were systematically varied in order \/

the viscosity, U, the particle and momentum parallel loss “H e \ Y%
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to explore a parameter space that was relevant for small
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and medium machines (see Fig. 1). Note, however, that
€ =0.67 in all our simulations as we wanted to investigate

Figure 1: The boxes represent the
spherical tokamaks. Our conclusions are nevertheless ap-
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plicable to standard configurations as a slightly different

less parameters in our simulation
€ would only change the constant factor in front of the

database. The blue (red) curve is

scaling laws [3].
. representative of MAST (ITER).

We briefly summarize the numerical set up of the simu-
lations, which is discussed in detail in [3]. Equations 1-3 are solved in slab domain representing
the drift plane. The "radial" coordinate spans 150p;, the first 50 of which represent the edge
region inside the separatrix where interchange instabilities drive the turbulence (and where the
loss terms are assumed to be equal to zero). The "poloidal" domain is half as wide as the "radial".
All the simulations are performed with a 512x256 grid and are carried out until the turbulence
reaches steady state and remains there for a statistically significant amount of time (i.e. the final
time is thousands of correlation times). Although the output of the code is the full time depen-
dent variation of all the scalar field evolved in Egs.1-3, we focus here only on the decay length
of the density, A,,, temperature, A7 and heat flux, A,. These are obtained in the following way.
We started by averaging the density, n(x,y,t), first over the poloidal direction and then over
time (during the period of statistically steady turbulence). This allowed us to find a single time
independent radial profile , < n >. We then constructed A, = p; <n > /(d <n > /dx), which
is again a function of x. Note that the factor p;, is used to make the decay length dimensional
(we express it in cm). Since the < n > profile is not simply exponentially decaying, A, has a

complex radial dependence. A possible way to characterise the width of the SOL with a scalar
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number, is to associate it with the local minimum of the decay length profile after the separatrix
(a robust feature of our simulations). This is a good (but conservative) estimate as it represents
the steepest gradient in a position where the SOL is dense and hot (and hence more likely to
cause problems to the divertor). The same procedure applied to T'(x,y,t) gives Ar.

It is now possible to identify the relation between the decay lengths and the dimensionless
parameters using statistical techniques. The data can be treated with regression analysis by
assuming the following form for a generic decay length:% =q (%)ﬁ ' DBz o Bs ,uﬁ“ZES Zgﬁ. In the
calculation, we removed the statistically irrelevant dimensionless parameter using the Student’s
t-test and repeated the regression without them (for this reason the viscosity dependence is not

present in the following expressions). The resulting scaling laws for the decay length are:

A 1.09+0.07
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Both regressions give a good coefficient of determination, R? (R?> = 0.98 in both cases). Com-
bining Egs.1 and 2, we can find an expression for the evolution of the thermal power density
(identified with the pressure), from which we find that Vg = %(ZT +X,)nT, where q| is the
heat flux flowing in the parallel direction. We now take A, = p; [ Wudx/ [3/2(Z1 +Z5) Psep)s
where the overline represents poloidal average and py,), is the normalized pressure at the sepa-
ratrix. This integral definition is well suited to capture the power deposition and it is therefore

preferred to the one we used for A7 and A,,. Applying regression analysis, we obtain:

A 1.18+0.03
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which gives again R?> = 0.98.

While Eqgs.4-6 are the natural way to express how the decay lengths behave as a function of
the parameters of the model, they still remain relatively obscure. In particular, it is useful to
explicitly relate the As to measurable quantities such as the magnetic field or the edge density.
This can be straightforwardly done by replacing in Eqs.4-6 reasonable definitions for the dimen-
sionless parameters in terms of engineering parameters. Unfortunately, this procedure relies on
the specific choice of these definitions which are sometimes not completely rigorous due to lack
of detailed models (for example no neoclassical diffusion model exists in open field lines). For
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arbitrary electron collisionality, Vs, we have: 2 ~ 4 D~y ~ L350 %,

2= 355 Ln ~ 5> Where Tp and
BT;

no are evaluated at the inner radial boundary, ¢ is the safety factor in the same position, L is

the midplane to target connection length. The thermal diffusivity can change depending on the
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T £ 12 < v, < 63. Similarly,
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collisionality, so that: y ~ ;’ 20 if v, < 12 0r v, > 63 and y ~ o
0

72
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Xr o~ ﬁ ifvi<<4and Xy ~ ’&T if v, > 4. References [3, 4] discuss these approximations.

With these definitions, we find that (assuming L ~ gR):

Ag ~ ql.18n8.28TO—0‘14B—0.83R0~44 if v, <4, (7
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while similar expressions can be straightforwardly derived for the density and temperature de-
cay length from 4-5. Unfortunately, the edge plasma parameters that appear in Eqs.7-8 cannot be
immediately translated into the engineering parameters, such as the power crossing the separa-
trix, Pgor, or the line averaged density, which can be directly controlled in experimental studies.
While it is not possible to replace the edge density with its line averaged counterpart (ESEL
does not describe the core physics), we can at least rewrite the previous scaling laws in terms of

Psor, (numerically measured). This gives:

Ay~ g QTR OB LORIN iy g 9)

The low collisionality expression, Eq.9, can be compared with recent experimental scaling laws
obtained in similar regimes [5]. Despite the limitations of the model and of the procedure used,
we find a reasonable agreement with the exponents of ¢ and B as well as a weak dependence on
the power crossing the separatrix. Interestingly, our results seem to miss the weak machine size
dependence of the experimental scaling law.
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