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One of the major concerns for the next generation tokamaks and for the future fusion reactors

is the exhaust of heat and particles. This process controls the plasma flow from the core towards

the first wall and the divertor, and determines the longevity of the plasma facing components

as well as the overall performance of the machine. The physics of the exhaust is regulated by

the narrow region of plasma known as the Scrape-Off Layer (SOL), where field lines do not

close on themselves, but impinge on solid surfaces. Due to the presence of open field lines, the

radial width of the SOL is determined by the balance between the parallel and the perpendicular

transport. In L-mode, the latter is caused by turbulence, and in particular by coherent structures

(called filaments or blobs) generated inside the last closed flux surface and expelled into the

SOL. The SOL width is a meaningful quantity as it determines the wetted surface on the divertor

target, over which the power exhausted from the core is deposited. In other words, it determines

the typical decay length of particles and energy outside the separatrix.

We studied the perpendicular transport at the outer midplane using a simplified interchange

model which allows to reproduce the blob dynamics in the SOL. In particular, we performed a

systematic numerical campaign with the code ESEL [1] in order to determine the power decay

length for different plasma regimes. We then applied regression analysis in order to extract

scaling laws for the SOL width from our large database of L-mode turbulence simulations.

The model used is based on 2D drift-fluid equations describing the evolution of the plasma

density, n, electron temperature, T , and vorticity, U :
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Here, Ω = ∇2
⊥φ , where φ is the electrostatic potential, C is a curvature operator responsible

for the interchange dynamics, the brackets are standard Poisson brackets used to describe the

advection. In addition, the inverse of the magnetic field B−1 ≈ 1+ ε +(ρs/R)x, where ε is the

inverse aspect ratio, ρs is the ion sound Larmor radius, R is the major radius and x is the "radial"

coordinate. The equations are solved in a drift plane ideally located at the outer midplane. The
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parallel dynamics is not solved self-consistently, but it is represented by simplified loss terms

on the left-hand side of Eqs.1-3. All the quantities are dimensionless as Bohm normalization

was applied to the equations. More details about the model are discussed in [1, 2].

Note that once the boundary conditions (described in [2]) are fixed, the solution of Eqs.1-3

is uniquely determined by the seven dimensionless parameters that appear in the equations.
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Figure 1: The boxes represent the

variation range of the dimension-

less parameters in our simulation

database. The blue (red) curve is

representative of MAST (ITER).

These are the machine inverse aspect ratio, ε , the inter-

change drive (the curvature operator is proportional to

it), ρs/R, the particle and thermal diffusivity, D and χ ,

the viscosity, µ , the particle and momentum parallel loss

term, Σn = ΣΩ and the temperature parallel loss term,

ΣT . These parameters were systematically varied in order

to explore a parameter space that was relevant for small

and medium machines (see Fig. 1). Note, however, that

ε = 0.67 in all our simulations as we wanted to investigate

spherical tokamaks. Our conclusions are nevertheless ap-

plicable to standard configurations as a slightly different

ε would only change the constant factor in front of the

scaling laws [3].

We briefly summarize the numerical set up of the simu-

lations, which is discussed in detail in [3]. Equations 1-3 are solved in slab domain representing

the drift plane. The "radial" coordinate spans 150ρs, the first 50 of which represent the edge

region inside the separatrix where interchange instabilities drive the turbulence (and where the

loss terms are assumed to be equal to zero). The "poloidal" domain is half as wide as the "radial".

All the simulations are performed with a 512x256 grid and are carried out until the turbulence

reaches steady state and remains there for a statistically significant amount of time (i.e. the final

time is thousands of correlation times). Although the output of the code is the full time depen-

dent variation of all the scalar field evolved in Eqs.1-3, we focus here only on the decay length

of the density, λn, temperature, λT and heat flux, λq. These are obtained in the following way.

We started by averaging the density, n(x,y, t), first over the poloidal direction and then over

time (during the period of statistically steady turbulence). This allowed us to find a single time

independent radial profile , < n >. We then constructed λn = ρs < n > /(d < n > /dx), which

is again a function of x. Note that the factor ρs is used to make the decay length dimensional

(we express it in cm). Since the < n > profile is not simply exponentially decaying, λn has a

complex radial dependence. A possible way to characterise the width of the SOL with a scalar
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number, is to associate it with the local minimum of the decay length profile after the separatrix

(a robust feature of our simulations). This is a good (but conservative) estimate as it represents

the steepest gradient in a position where the SOL is dense and hot (and hence more likely to

cause problems to the divertor). The same procedure applied to T (x,y, t) gives λT .

It is now possible to identify the relation between the decay lengths and the dimensionless

parameters using statistical techniques. The data can be treated with regression analysis by

assuming the following form for a generic decay length:λ f
R = α

(
ρs
R

)β1 Dβ2 χβ3 µβ4Σ
β5
n Σ

β6
T . In the

calculation, we removed the statistically irrelevant dimensionless parameter using the Student’s

t-test and repeated the regression without them (for this reason the viscosity dependence is not

present in the following expressions). The resulting scaling laws for the decay length are:
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Both regressions give a good coefficient of determination, R2 (R2 = 0.98 in both cases). Com-

bining Eqs.1 and 2, we can find an expression for the evolution of the thermal power density

(identified with the pressure), from which we find that ∇‖q‖ =
3
2(ΣT +Σn)nT , where q‖ is the

heat flux flowing in the parallel direction. We now take λq ≡ ρs
∫

∇‖q‖dx/[3/2(ΣT +Σn)psep],

where the overline represents poloidal average and psep is the normalized pressure at the sepa-

ratrix. This integral definition is well suited to capture the power deposition and it is therefore

preferred to the one we used for λT and λn. Applying regression analysis, we obtain:

λq
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which gives again R2 = 0.98.

While Eqs.4-6 are the natural way to express how the decay lengths behave as a function of

the parameters of the model, they still remain relatively obscure. In particular, it is useful to

explicitly relate the λ s to measurable quantities such as the magnetic field or the edge density.

This can be straightforwardly done by replacing in Eqs.4-6 reasonable definitions for the dimen-

sionless parameters in terms of engineering parameters. Unfortunately, this procedure relies on

the specific choice of these definitions which are sometimes not completely rigorous due to lack

of detailed models (for example no neoclassical diffusion model exists in open field lines). For

arbitrary electron collisionality, ν∗, we have:ρs
R ∼

T 1/2
0
BR , D∼ µ ∼ q2n0

BT 3/2
0

, Σn ∼
T 1/2

0
LB , where T0 and

n0 are evaluated at the inner radial boundary, q is the safety factor in the same position, L is

the midplane to target connection length. The thermal diffusivity can change depending on the
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collisionality, so that: χ ∼ q2n0

BT 3/2
0

if ν∗� 12 or ν∗� 63 and χ ∼ q2n2
0L

BT 7/2
0

if 12 < ν∗< 63. Similarly,

ΣT ∼
T 1/2

0
BL if ν∗� 4 and ΣT ∼

T 5/2
0

n0BL2 if ν∗� 4. References [3, 4] discuss these approximations.

With these definitions, we find that (assuming L∼ qR):

λq ∼ q1.18n0.28
0 T−0.14

0 B−0.83R0.44 if ν∗� 4, (7)

λq ∼ q1.65n0.75
0 T−1.08

0 B−0.84R0.91 if ν∗� 4, (8)

while similar expressions can be straightforwardly derived for the density and temperature de-

cay length from 4-5. Unfortunately, the edge plasma parameters that appear in Eqs.7-8 cannot be

immediately translated into the engineering parameters, such as the power crossing the separa-

trix, PSOL or the line averaged density, which can be directly controlled in experimental studies.

While it is not possible to replace the edge density with its line averaged counterpart (ESEL

does not describe the core physics), we can at least rewrite the previous scaling laws in terms of

PSOL (numerically measured). This gives:

λq ∼ q1.52n0.7
0 P−0.25

SOL B−1.03R0.91 if ν∗� 4, (9)

λq ∼ q2.24n2.28
0 P−1

SOLB−1.78R2.46 if ν∗� 12. (10)

The low collisionality expression, Eq.9, can be compared with recent experimental scaling laws

obtained in similar regimes [5]. Despite the limitations of the model and of the procedure used,

we find a reasonable agreement with the exponents of q and B as well as a weak dependence on

the power crossing the separatrix. Interestingly, our results seem to miss the weak machine size

dependence of the experimental scaling law.
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