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Introduction

The conservation of the momentum during particle collisions is an important issue in studying

the electron cyclotron current drive (ECCD), the neoclassical transport and etc. In the present

GNET code[1, 2], which solves the drift kinetic equation for energetic particles in 5D phase

space, the linear Monte Carlo collision operator is applied. This operator consider the collisional

effect between test particle and background particle only as the pitch angle scatter and energy

scattering. The change of the background particle distribution and the momentum transferred

from the test particle to the background are ignored in this operator. The Ray tracing code shows

a large impact of parallel momentum conservation for ECCD simulation [3, 4]. However, in the

previous study the finite orbit and radial drift effects are not considered because of a radially

local assumption.

In this paper, in order to study ECCD quantitatively, we develop collisional operators con-

serving momentum for GNET. Two momentum conserving collision operator models are con-

sidered applying an iterative method and implemented to GNET code. We apply the developed

model to the ECCD in the Heliotron J plasma with the momentum conserving operators.

Momentum conserving model

We assume the particle collision term as Ccoll(δ f ) = C(δ f , fmax)+C( fmax,δ f ), where

C( fmax,δ f ) is the field particle operator which represents the collision effect for the background

particles. In this study we consider two momentum conserving models. One is very easy to

implement but it does not include the information in the velocity space. We named it as the

”simple” model. The other includes all information in the velocity space, but it is now being

implemented. We named it as ”velocity dependent” model.

In the simple model, we assume a high speed limit and C( f) is expressed as

C( fmax,δ f ) = p(x,v) fmax, (1)

where p(x,v) is a function of the real space coordinate, x, and the velocity, v. p(x,v) is deter-

mined by the conservation laws of energy and momentum. After some calculations, we obtain

p(x,v) = v ·p(x)+λ (x)
(

v2

v2
the

− 3
2

)
, (2)
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p(x) = − 2
n0v2

the

∫
vC(δ f , fmax)dv, λ (x) = − 2

3n0v2
the

∫
v2C(δ f , fmax)dv, (3)

where n0 means the density of background electrons. Once p(x,v) is obtained from Eq. (2), we

can calculate C( fmax,δ f ) which compensates the lost momentum and energy from test particle.

Then we can consider C( fmax,δ f ) as a new source–sink term.

In the GNET code, if we iteratively calculate until δ f converges, we obtain a final profile of

C( fmax,δ f ). We label the steady state solution obtained by using Sql as δ f0 and use C( fmax,δ f0)

which becomes a new source term. The steady state solution of this source term is δ f1. Obtain-

ing δ f1, we can consider the conservation of momentum when we calculate δ f0. However the

test particle lost the momentum due to the collision with background plasma in the process of

calculating δ f1. Therefore we iteratively calculate δ fn (n is the natural number) as

∂δ f0

∂ t
+(vd +v‖) ·

∂δ f0

∂x
+ v̇ · ∂δ f0

∂v
−C(δ f0, fmax) = Sql( fmax)+Lorbit(δ f0),

∂δ f1

∂ t
+(vd +v‖) ·

∂δ f1

∂x
+ v̇ · ∂δ f1

∂v
−C(δ f1, fmax) = C( fmax,δ f0)+Lorbit(δ f1), (4)

...,

until the lost momentum aproaches 0. At the same time we evaluate the momentum which the

test particle lost and calculate the momentum loss rate from them. We stop the iteration when

the momentum loss rate becomes small sufficiently. After the iterative method, we obtain the

conserving momentum distribution function by calculating ∑n
i δ fi.

Though the simple model conserves the momentum, it does not include the exact information

in the velocity space. Therefore it is necessary to implement the more exact model. The velocity

dependent model is derived from the Fokker–Planck collisional term directly, so it includes

exact information more than the simple one.

The field particle operator can be expressed using Legendre polynominals Pn(cosθ) as

C( fmax,δ f ) =
∞

∑
n=0

Cn( fmax,δ f (n)(v))Pn(cosθ), (5)

where v is the total velocity of an electron and θ represents the pitch angle. Introducing the

Trubnikov-Rosenbluth potential and define u = cosθ to simplfy [5, 6], we can describe field

particle term Cn( fmax,δ f (n)(v)) as

Cn( fmax,δ f (n)(ve)) = Λe/e fmax

∞

∑
i=0

Pi(ve)
[
δ f (n)(ve) (6)

+2
∫ ve

0
u2δ f (n)(u)

{(
n+

ui+2

vi+1
e

−n−
ui

vi−1
e

)
− 1

2i+1
ui

vi+1
e

}
du

+ 2
∫ ∞

ve

u2δ f (n)(u)
{(

n+
vi+2

e
ui+1 −n−

vi
e

ui−1

)
− 1

2i+1
vi

e
ui+1

}
du

]
,
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where n+ = (i + 1)(i + 2)/(2i + 1)(2i + 3), n− = (i− 1)i/(2i− 1)(2i + 1), ve = v/vthe. Λe/e

represents the amplitude of field particle term and in this paper it is assumed as Λce4/m2
eε2

0 ,

where Λc is coulomb logarithm, e is charge, me is mass of an electron and ε0 is permittivity in

vacuume. In order to obtain the field particle term Cn( fmax,δ f (n)(v)) which is determined by

the obtained pertubed distribution function δ f (n)(v). We can iteratively calculate δ f (n)(v) in

the same way with the simple model case. After the iterative method, we calculate the complete

collision operator according to Eq. (5).

Simulation result

In this study we apply the momentum conserving mode assuming the same magnetic config-

uration, heating and plasma parameters as the previous paper[2]. We consider the Heliotron J

configuration with εb = 0.01 at the magnetic flux surface ρ = 0.67. The radial heating point is

set to (ρ0,φ0,θ0) = (0.1,45◦,0◦). We also set the parameters describing the EC resonance con-

dition as follows: EC wave frequency is 70 GHz, 2ωce/ω = 0.98, n‖ = 0.44 and ∆ = 1.0×10−3.

ECRF heating power is deposited at the top of the ripple in this configuration.

We run the GNET iteratively and obtain the steady state solution, δ f . Fig. 1 (a) shows the

firstly obtained distribution function. The distribution becomes asymmetric in v‖ at the high

energy region. This is because many ECRH accelerated electrons hardly become trapped and

the collisional relaxtion of the electron deficit in low energy region is faster than that of the

accelerated electrons. As a result, the excess of electrons with positive v‖ occured and it is

found that the negative toroidal current is driven by the Fisch-Boozer effect. Fig. 1 (b) shows

the source–sink term to conserve the momentum using the steady state solution δ f0. Then the

steady state solution δ f1 is evaluated using the this source–sink term (Fig. 1 (c)) and again

the next source–sink term is evaluated (Fig. 1 (d)). In the two source–sink terms we can see

the larger distribution in the positive v‖ region and this means the lost momentum have large

effect in this region. Fig. 2 shows the momentum loss rate at the each iterative calculation in the

simple model. We evaluate the momentum loss at each calculation, and define the momentum

loss rate as ploss = (p0 − pn)/(p0), where p0 is the momentum lost by test particle at first

calculation and pn represents one at the n th iterative caluculation. Fig. 2 shows the momentum

loss decreases as the iterative calculation advanced and dropped less than 5% of lost momentum

than initial simulation. The calculated ECCD current of the simple model is -20.1kA and the

non-conserving one is -18.4kA. We can see the calculated ECCD current is larger by 9.2% than

that of non-conserving one.
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(a) Averaged distribution function δf0, εb=0.01
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(c) Averaged distribution function δf1, εb=0.01
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(b) Source-sink term C(fmax,δf0), εb=0.01
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(d) Source-sink term C(fmax,δf1), εb=0.01
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Figure 1: Flux averaged distribution function

of (a) δ f0, (b) source–sink term C( fmax,δ f0),

(c) δ f1 and (d) source–sink term C( fmax,δ f1).
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Figure 2: The momentum loss rate at each iter-

ative calculation.

Conclusion

In order to study the ECCD physics on he-

lical plasmas, we have simulated the current

drive of ECH plasmas in toroidal plasmas by

GNET. To evaluate the EC current quantita-

tively correct, we have improved the collision

operator of GNET to conserve the parallel mo-

mentum. We have implemented two models;

the simple and velocity dependent models. It

is easy to implement the simple model and it

showed a good conservation of parallel mo-

mentum. However it does not include the ex-

act information in the velocity space. There-

fore we are implementing the velocity depen-

dent model which is expected to include the

exact information in the velocity space.
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