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Co-propagating Compressional Alfvén eigenmodes (CAE) with shorter wavelength and 

higher frequency than the counter-

propagating CAE and Global Alfven 

eigenmodes (GAE)  are commonly seen in 

NSTX H-mode plasmas [1].  Whereas the 

lower frequency CAE and GAE are excited 

through a Doppler-shifted cyclotron 

resonance, the high frequency CAE (hfCAE) 

are driven through a simple parallel 

resonance.  The presence of the hfCAE is 

strongly correlated with a low frequency n=1 

kink.  An example of multiple hfCAE with 

toroidal mode numbers from n=8 up to n=13 

is shown in Fig. 1a.  The hfCAE appear 

concurrently with an n=1 kink-like mode 

(Fig. 1c), which is probably similar to the 

long-lived mode seen on MAST [2].  

	

 Typically the hfCAE frequencies lie 

between ≈1.2 MHz and ≈2.3 MHz (fci ≈2.5 MHz).  The magnetic fluctuations show a strong 

compressional polarization, as measured with Mirnov coils [1].  The modes are identified as 

CAE by comparison with the eigenvalues 

predicted from a 2-D reduced dispersion 

relation.  The frequencies predicted by the 

dispersion relation are in good agreement with 

measured frequencies over a range of shots, as 

shown in Fig. 2. 

The focus of this paper is on a curious 

coupling of the hfCAE to the kink mode [1].  

The hfCAE are typically bursting, with a burst 

frequency on the order of a few kHz. The n=1 

Doppler-shifted kink frequency is usually 
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Fig. 1. a) Spectrogram showing hfCAE, b) 
spectrogram of rms(hfCAE), c) spectrogram 
showing kink evolution.
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Fig. 2.  The measured mode frequency, corrected 
for the Doppler shift due to the toroidal plasma 
rotation are plotted vs. the predicted frequency 
for toroidal mode numbers from n=7 to n=15.
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higher than this, but when the kink frequency 

does drop towards the natural burst frequency of 

the hfCAE, the hfCAE burst frequency will 

become locked to the kink frequency.  This is 

seen in Figs. 1b and 1c which show 

spectrograms of, respectively, the hfCAE burst 

amplitude and the n=1 kink-like mode.  Starting 

after about 0.25s a strong modulation of the 

burst rate at the kink frequency is seen.  The 

bursts aren't 'entrained' in the kink, as was 

reported previously for the coupling of TAE to 

the kink [3], rather the bursts are axi-symmetric 

(Fig. 3). A case where the kink slows and locks 

to the wall is shown in Fig. 4.  The relative phase between the kink and the hfCAE bursts 

shifts by ≈ 115º and the amplitude of the hfCAE bursts remains large as the burst frequency 

drops to ≈1 kHz.  

Some of the characteristics of this coupling between the kink and the hfCAE bursting can 

be seen in a simple predator-prey model, with the 

added assumption that the rotation of the kink 

modulates in some way the growth or damping 

rate of the hfCAE.  Predator-prey simulations find 

that with the growth or damping rate modulated by 

as little as a few percent, at a frequency near the 

natural burst frequency, the burst frequency 

becomes locked to the modulation frequency.  

	

 The modulation of the damping or drive 

requires a symmetry-breaking interaction of the 

kink with some asymmetric feature, such as an 

error field, the non-axisymmetric vacuum vessel or 

possibly the asymmetric beam injection.  For 

example, as the kink rotates, the  kink interaction 

with the error field either reinforces or partially 

cancels the error field.  This modification of the 

error field by the kink could modulate the part of 

the fast ion distribution driving the hfCAE.  

Alternatively, the modulation of the plasma shape, 
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Fig. 3.  Filtered signals from a toroidal array of 
Mirnov coils showing the hfCAE bursts (red, 
blue and green) and the kink mode (black).  
The kink mode propagates, the hfCAE bursts 
are concurrent at all toroidal positions.
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Fig. 4.  a) spectrogram showing single n=12 
hfCAE, b) rms kink amplitude evolution 
(black) and hfCAE burst amplitude, c)phase 
between kink and hfCAE bursts, d) 
spectrogram showing hfCAE burst 
frequency.
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interacting with the non-symmetric vacuum vessel, might directly affect the hfCAE stability.  

Or the displacement of the plasma by the kink will modulate in a small way the deposition 

profile of the neutral beams.  Any of these effects might weakly affect the mode stability.

Predator-prey systems may be modeled with a coupled set of non-linear equations such as 

! 

An+1 = An +" d An Bn #T(tn )( )$t ! 	

 or 	



! 

"A /"t = # d A B $T(t)( )

! 

Bn+1 = Bn + S " BnAn( )#t !	

 	

 or 	



! 

"B /"t = S # BA !
shown as difference and differential equations.  Here the first equation for the parameter A 

describes the mode amplitude evolution.  The second equation for B describes the fast ion 

beta (mode drive), normalized such that B=1 represents marginal stability.  The threshold for 

mode growth may be modulated through the parameter T=1+εsin(ωt).  Losses are assumed 

proportional to mode amplitude and γd is the mode growth rate.

For the simple, unmodulated, case with 

T=1, the equations have a stationarysolution 

with B=1 and A=S/B.  The system tends to 

relax to that state quickly. However, intrinsic 

to the model is an inherent resonance at some 

natural  bursting frequency.  It is well known 

that the addition of 'noise' to the predator-prey 

mathematical models can stimulate periodic 

behavior [2]. Similarly, introducing a coherent 

perturbation near the intrinsic resonant 

frequency can also stimulate periodic behavior.  

Noise can be introduced in the difference equation realization of the model through the use of 

a coarse time-step, but in the integral formulation, noise must be explicitly introduced (or just 

the coherent perturbation to be amplified).

Figure 5 shows a spectrogram of the burst frequency from the predator-prey model where 

the stability threshold is modulated by 2%.  

The modulation frequency starts at 15 kHz, 

above the 'natural' burst frequency of ≈ 7 kHz, 

and is swept down to 2 kHz.  The stability 

threshold is also modulated with broadband 

fluctuations of 4%.  Bursting at the natural 

burst frequency of ≈ 7 kHz can be seen 

initially, and towards the end of the 

spectrogram.  As the modulation frequency 
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Fig. 6.  Spectrogram of predator-prey model of 
bursting modes with 2% threshold modulation.
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Fig. 5.  Spectrogram of predator-prey model of 
bursting modes with threshold modulation of 2% 
and broadband noise with rms amplitude of 4% 
added to the threshold.
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sweeps down through the resonant frequency, the bursting becomes modulated by the applied 

frequency.  A similar simulation is shown in Fig 6, but now without the 'noise' added to the 

stability threshold.  Modulation at harmonics, and subharmonics of the modulation frequency 

are seen.

The simulations demonstrate that modulation of the damping rate or fast ion source can 

lock the burst frequency to the modulation frequency if the modulation frequency is near 

enough to the natural burst frequency.  For the parameters used here, that means within 

≈ ±40% of the natural burst frequency.  The natural burst frequency in the experiment, 

however, is not so well known, and may be evolving.  In Fig. 1 the natural burst frequency 

starts at about 3 kHz at 0.22s and increases to ≈ 5 kHz at 0.25s.  The kink frequency is 7 kHz 

at this time, and the burst frequency 

jumps up to match it.  However, the 

evolution of the natural burst frequency 

is unknown after 0.25s.  

The mode amplitude and fast ion 

beta evolution from the simulation 

shown in Fig. 5 are graphed in Fig. 7 to 

show the cyclical bursting behavior.  As 

the applied perturbation frequency 

sweeps downwards towards the natural 

resonance frequency, the mode 

amplitude modulation increases (black 

curves).  As the modulation frequency 

sweeps through the natural burst frequency, the relative phase between the modulation and 

the mode bursts shift by ≈180º.  For frequencies below the natural burst frequency the mode 

amplitude is only modulated, without clear bursting.  This seemingly conflicts with the 

experimental observations shown in Fig. 4 where strong bursting is seen down to ≈1 kHz.

A clear coupling of a low frequency kink mode with the bursting frequency of hfCAE  is 

seen in NSTX.  Some features of this coupling can be produced with a predator-prey model 

for the bursting, where the hfCAE stability threshold is modulated by the rotation of the kink.  

This would imply an interaction of the kink with some non-axisymmetric feature of the 

machine, e.g., error fields, vacuum vessel shape or neutral beam injection.
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Fig. 7.  Evolution of attractor as perturbation frequency 
sweeps towards natural resonant frequency (black) and 
below resonant frequency (red).  (Arrows indicate 
direction of time.)
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