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Introduction

One of essential difference between tokamak and helical is the geometrical symmetry [1].

Recently, changes in plasma properties induced by the application of non-axisymmetric field to

tokamak attract strong interests. Especially, observation of offset toroidal rotation [2] is impor-

tant for stabilizing RWM even if it is small. Analytical offset toroidal rotation formula derived

in 2011 has been extended to include effect of impurity toroidal viscosity.

Offset Toroidal Rotation due to Bulk Ion Toroidal Viscocity

Ambipolarity is ensured in the axisymmetric tokamak, irrespective of electric field. If the

symmetry braking occurs, the ambipolarity of the particle flux is broken. Then the radial elec-

tric field (electrostatic potential) is adjusted to satisfy ambipolarity (non-ambipolar flux=0).

Assuming impurity toroidal viscosity, which is in Pfirsh Schluter regime, ambipolarity (non-

ambipolar flux=0) condition is give by 〈BBBt ·∇ ·ΠΠΠi〉 = 0. Shaing [3] gave following expression

for this neoclassical toroidal viscosity (NTV) (′ = d/dV ).
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Therefore non-ambipolar flux=0 condition, 〈BBBt ·∇ ·ΠΠΠi〉= 0 gives dΦ
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+ 1
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To get an analytic expression for the offset toroidal rotation, we use the 0-th order radial force

balance equation to see a relation among the offset toroidal rotation, the thermodynamic force,

and the residual poloidal flow.
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, where q is the safety factor. By using an analytic expression for the residual poloidal rotation

by Kim [6], uuui0 ·∇θ = −K1F(BBB·∇θ)
eZi〈B2〉

dTi
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, an analytic expression for the offset toroidal rotation of

the bulk ion for NTV, uiζ 0 = Ruuui0 ·∇ζ is given by Kikuchi [4], [5] as,
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In the large aspect ratio cylindrical plasma, offset toroidal rotation is given as follows,

uiζ 0 =
3.54−K1

eZiBθ

dTi

dr
(4)
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Since measurement of toroidal rotation is made using impurity toroidal rotation, the expres-

sion of the offset toroidal rotation of the impurity is required for comparison to the experiment.

We use a formula uIζ 0−uiζ 0 =−1.5K2
dTi
dr [1] to obtain following formula.

uIζ 0 =
3.54−1.5K2−K1

eZiBθ

dTi

dr
(5)

Effect of Impurity Toroidal Viscosity on Offset Toroidal Rotation

In a multi species plasma, the zero non-ambipolar flux condition is given as,

∑
a

eaΓ
a
na = 0 (6)

, where

Γ
a
na =

〈BBBt ·∇ ·ΠΠΠa〉
eaψ ′φ ′

(7)

Here, BBB ·∇ζ = φ ′ and BBB ·∇θ =−ψ ′. Considering the electron viscosity is small, condition for

zero non-ambipolar flux ∑a eaΓa
na = 0 is given as,

〈BBBt ·∇ ·ΠΠΠi〉+ 〈BBBt ·∇ ·ΠΠΠI〉= 0 (8)

Explicit form of the impurity toroidal viscosity is given in the Appendix. Here we use succes-

sive approximation to obtain first order correction to offset toroidal rotation. We expand offset

toroidal rotation as uζ = uζ 0 +uζ 1 +−−. 0-th and 1-st order equations are given as follows,

〈BBBt ·∇ ·ΠΠΠi〉0 = 0 (9)

〈BBBt ·∇ ·ΠΠΠi〉1 + 〈BBBt ·∇ ·ΠΠΠI〉0 = 0 (10)

Obviously, the solution for (9) is given by (4). Solution to the 1-st order equation (10) may

be given by approximating uζ 1 ∼ Er1/Bp =−dΦ1
dV

dV
dr /Bp and using the equation (1) to obtain,
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Therefore, 1-st order toroidal flow due to impurity NTV, uζ 1 is given by,

uζ 1 =−
dV
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π3/2R2〈BBBt ·∇ ·ΠΠΠI〉0
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(12)
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Appendix: Impurity NTV in PS regime

Neoclassical toroidal viscosity (NTV) in Pfirsh-Schluter regime for impurity is given in

Hamada coordinates by Shaing[8] as,
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[
〈B

BBt ·∇B
B

∂B
B∂θ
〉(µI1uuu ·∇θ +µI2

2qqq
5pI
·∇θ)+ 〈B

BBt ·∇B
B

∂B
B∂ζ
〉(µI1uuu ·∇ζ +µI2

2qqq
5pI
·∇ζ )

]
(13)

Here original paper by Shaing [8] includes pIτII , which is not necessary. Viscosity coefficients

are given by Hirshman-Sigmar [7] as follows,
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In Pfirsh-Schluter regime, Hirshman[7] gives following expression.
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In case Ti ≈ TI , xaa = 1, x2
iI ≈
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� 1, x2

Ii ≈
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� 1 when i is deuterium and I is Carbon, since

xab = vT b/vTa.

q01
II =

15
4
√

2
, q00

II = 2
√

2 , q11
II =

265
16
√

2
(21)

Since x2
Ii� 1, we have
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From (18), we have qi j
I = qi j

II− ri j
II +qi j

Ii/α , where α = nIZ2
I /niZ2

i is called impurity strength

parameter. And,
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So, QI =
267
40 +O(1/αxIi). Taking the leading order for QI , we obtain,
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If we define normalized viscosity µ̂I j = µI j/pIτII , we obtain,

µ̂I1 = 1.357 , µ̂I2 = 2.193 , µ̂I3 = 6.81 (28)

If the magnetic field variation in poloidal and toroidal directions is given as,

B = B0[1− εcosθ −δcos(mθ −nζ )] (29)

, we have (∂B/∂θ)/B = εsinθ + mδ sin(mθ − nζ ). Using the relation BBBt = φ ′∇V ×∇θ in

Hamada coordinates, we obtain,
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Here, φ ′ = dφ/dV = BBB ·∇ζ ∼ Bt/R ∼ B/R. Inserting these expression, NTV in PS regimes

becomes,
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