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Despite the obvious limitations associated with high dimension the grid based Vlasov-Maxwell

numerical solution of the following system
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constantly attract attention in both space and laboratory plasmas communities. The idea to relive

the computational complexity by utilizing an Adaptive Mesh Refinement (AMR) comes up

naturally. The example of adaptive mesh is shown in Figure 1. In this paper we present adaptive

electromagnetic Vlasov-Maxwell solver dealing with a special class of distribution functions

f (x, ~u) = f (x, ux)δ
(
~u⊥+(e/m)~A⊥

)
. (4)

Although its simplicity this distribution function allows describe relativistic in laser driven

plasma. and quickly test various numerical techniques with modest computational resources.

In the following we apply finite volume technique to the Vlasov equations due to its well-

recognized advantage to deal with any kind of mesh without degrading the conservation prop-

erty. The finite volume method applied in our code requires the Vlasov-Maxwell equations to

be recast in a conservative form. For (4) the Vlasov equation reduces to
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Generic semi-discrete finite volume scheme reads with fluxes ( f~Ψ)→{F, G}

dqi, j
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=−
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−
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(6)

admits central-upwind flux approximation [1] where flux

Fi+1/2, j =
ax

2

[
f (q−i+1/2, j)+ f (u+i+1/2, j)

]
− ax

2

(
q+i+1/2, j−q−i+1/2, j

)
, (7)
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where ax is the local speeds of solution propagation estimate as ax = max(λk(∂~q~F(~q)), 0) = c.

The flux F(q+i+1/2,q
i−1/2
i+1/2) have to be supplemented with an appropriate reconstruction of point-

wise values of the solution at the cell edges. Here we consider a piece-wise linear reconstruction

qi, j(x,y) = qi, j +Dx
i, j · (x− xi)+Dy

i, j · (y− y j), (8)

Dx
i, j =

qi+1, j−qi−1, j

2∆x
, Dy

i, j =
qi, j+1−qi, j−1

2∆x
(9)

The piece-wise linear reconstruction on is not guarded to be monotone in the presence of discon-

tinuities. Monotonicity imply that the cell average remains bounded by the values of neighbors

including corner ones, i.e. min(Qi, j)< qi, j(x,y)< max(Qi, j). The matrix Qi j is formed by im-

mediate neighbors of the cell (i, j). The slope-limiting procedure can be summarized as follows.

First, we calculate matrix of slopes

D±x =


(qi−1, j+1−qi, j) (qi, j+1−qi, j) (qi+1, j+1−qi, j)

(qi−1, j−qi, j) ±ε (qi+1, j−qi+1, j)

(qi−1, j−1−qi, j) (qi, j−1−qi, j−1) (qi+1, j−1−qi+1, j)

 (10)

Here the constant ε = 10−20 was introduced to ensure continuous dependence on the data. The

new slopes for (9) are defined as

Dx
i, j = min(wpp,wpm,wmp,wmm) ·

[
qi+1, j−qi−1, j

]
/2, (11)

Dy
i, j = min(wpp,wpm,wmp,wmm) ·

[
qi, j+1−qi, j−1

]
/2. (12)

where weights are calculated at corners. For upper-right corner wpp we have

wpp =


Vmax/upp, upp >Vmax,

Vmin/upp, upp <Vmin,

1, otherwise

, where
Vmin = min(D−)

Vmax = max(D+).
(13)

where upp is the reconstruction at upper-right corner, i.e. upp = 0.5(Dx
i j + Dy

i j).

Figure 1: Adaptive mesh re-

finement

The scheme was extended to locally adaptive grid using conser-

vative fluxes reconstruction. The algorithm can be summarized

as follows; a newly created cell is initialized in a conservative

manner using previous cell averages. The assigned cell average

is computed by integration of the reconstruction polynomial over

a newly created control volumes. We assume that the neighbor-

ing cell resolution is restricted by factor of two. In this case the
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Figure 2: Electron distribution function in the course of laser plasma interaction.

communication between different levels of refinement maybe or-

ganized in form of boundary conditions provided by
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2i+1,2 j +ql+1
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]
. (15)

For detailed description of AMR procedure consult [2]. To demonstrate our code in action we

perform simulation of a slab of plasma irradiated by a laser pulse [3]. Normally dense plasma is

not transparent for electromagnetic radiation if ωpe >ω0, this condition defines a critical density

ωpe(ncr =ω0), where ncr =ω2
0 me/4πe2. If laser pulse becomes relativistic, i.e. a0 = eA/mc> 1,

then plasma frequency changes nonlinearly with the Lorenz factor ωpe ∼
√

1/γ where γ ∼ a0.

The initial condition for laser field is taken in form of circularly polarized laser pulse with the
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Gaussian envelop

~A(t, x) =
a0√

2
F(ϕ)

(
cos(ϕ)~y+ sin(ϕ)~z

)
. (16)

where ~A = {0, ax, ay}, ϕ = ωt− kxx. We consider a flat-top envelope F(ϕ)

F(ϕ) =
1
2

(
tanh(φ +∆L)− tanh(ϕ−∆L)

)
, (17)

where ∆L is the chatacteristic width of the laser pulse. The plasma slab with initial density cor-

responding to N = ncr is initialize 0 < x < Lx where Lx = 32 c/ω0 is the plasma slab width.

The laser pulse width is ∆L = 28c/ω0, the laser frequency is ω = 1 eV . The plasma slab is

initialized using the relativistic Maxwellian distribution function. The laser pulse is propagat-

ing from the left side of simulation box along x direction and collides with the plasma slab a

x = 0. In the course of the interaction the radiation pressure of the incident laser pulse pushes

the plasma electrons. That leads to building up a charge density gradient. As a result the longi-

tudinal electric field Ex arises behind the laser piston. The electric field grows until it reaches an

amplitude sufficient to trap electrons in a potential well formed by both self-consistent plasma

and laser ponderomotive force in Figure 5. The adaptation mesh is performed dynamically and

controlled by a special criterium. In this work we apply criterium for refinement which analy-

ses the amplitude and first derivative of the local solution trying to keep prescribed resolution.

Each newly created cell is initialized in a conservative manner using the cell averages obtained

by integration of the reconstruction polynomial over a corresponding control volume. The new

electromagnetic Vlasov solver is simple, robust and efficient and can be extended to higher

dimensions if needed.
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