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We analyse the dynamics of a relativistic particle moving in a uniform magnetic field 

and perturbed by a stationary electrostatic wave. We show that a pulsed wave produces an 

infinite number of perturbing terms with the same winding number. The perturbation coupling 

alters the number of island chains as a function of the parameters of the wave. We also observe 

that the number of chains in is always even if the number of islands in each chain is odd. 

 

 

When we add a small perturbation to an integrable system, most of its periodic orbits 

with rational winding number are destroyed and just a few remain in phase space [1-3]. 

According to the Poincaré-Birkhoff Fixed Point Theorem, for each rational winding number, 

there is an even number of periodic trajectories, half stable and half unstable [1-3]. 

 Resonant islands appear around the stable periodic points, and the islands surrounding 

the points of one orbit form an island chain [1-3]. The Poincaré-Birkhoff Fixed Point Theorem 

makes no claim on the number of chains for each rational winding number [1-3]. Although 

some twist systems present more than one chain [4, 5], the literature generally shows systems 

with just one island chain [1]. 

 In this paper, we analyse the behaviour of a relativistic particle moving under the 

combined action of a uniform magnetic field and a stationary electrostatic wave. We show that 

a pulsed wave presents an infinite number of perturbing terms with the same rational winding 

number. For each winding number, the parameters of the wave determine which of these terms 

generate islands in the same region of phase space. As a consequence, the number of chains for 

the present system varies as a function of the wave number and wave period [6]. 

Consider a relativistic particle with charge q , rest mass m  and canonical momentum p   

moving in a uniform magnetic field 
0
ˆB=B z , with vector potential 

0
ˆB x=A y , and perturbed by 

a stationary electrostatic wave with wave vector k , period T  and amplitude / 2ε  lying along 

the x  axis. Using dimensionless quantities and making the canonical transformation 
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2 sinx I θ=  and 2 cos
x

p I θ= , the dimensionless Hamiltonian that describes the dynamics 

transverse to the magnetic field is given by [6] 
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where the pulsed wave is described by the periodic sum of delta function kicks. 

 To determine the primary resonances, we expand (1) in a Fourier-Bessel series as 
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where ( 2 )
r

J k I  are Bessel functions of order r . 

 From (2), we calculate the approximate resonant condition for the system 
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where 2 Tω π=  is the frequency of the electrostatic wave and we approximate 0d dtθ ω≅ , 

with 0ω , the unperturbed frequency of the system, given by 1/2

0 0 (1 2 )dH dI Iω
−

= = + . 

Since ω  and 0ω  are both positive, (3) is satisfied only when r  and s  have the same 

sign. An analysis of the Hamiltonian (2) leads to the same conclusion, i.e., just the terms for 

which r  and s  have the same sign (with 0r ≠  and 0s ≠ ) are associated with resonances. 

Expression (3) gives the position of the resonances with respect to the action variable as 
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r s

r rT
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where 0s r ω ωΩ = =  is the winding number, also known as rotation number, and for the 

resonances of the system Ω  is rational. 

 Since the position ,r s
I  is a function of the ratio s rΩ =  rather than of the individual 

numbers r  and s , we notice that (2) presents an infinite number of perturbing terms that may 

generate islands in the same region of phase space. For example, the (1,1); (-1,-1); (2,2); (-2,-2), 

etc. perturbations are located in the same position 2 2 2

1,1 ( 4 ) / 8I T π π≅ − . 

 Considering r  and s  two positive relative primes, each ( , )mr ms  perturbation (with m  

integer and 0m ≠ ) may generate islands in the same region of phase space. For an isolated 

( , )mr ms  resonance, there are | |m  chains characterized by s rΩ = . Each periodic orbit has r  
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points and between two consecutive pulses of the wave 2 2s rθ π π∆ = = Ω  (mod 2 )π . 

The superposition of an infinite number of perturbing terms that may generate islands in 

the same position alters the number of chains as a function of the parameters of the wave. 

Figure 1 shows the number of chains as function of the wave number k  and wave period T  for 

the (3,7) and (4,3) resonances. Each colour represents a different number of chains as indicated 

in the pictures. In both panels, we observe that the number of chains increases with k  and T . 

The islands of the (4,3) resonance are generated by the terms in (2) for which r  is a 

multiple of 4 and 3 / 4s r= . However, the amplitude of the various perturbing terms is not the 

same. When 0k →  or 3 / 2T π→ , the argument of the Bessel functions 4,3( 2 )
r

J k I  tends to 

zero. Therefore, only the amplitude of the functions 4J
±

 is considerable and the (4,3) resonance 

presents a single island chain in phase space, as can be seen in Fig. 1(b). Increasing the values of 

k  or T , the amplitude of the functions 8J
±

 cannot be neglected anymore and the resonance 

presents two island chains. If we continue increasing the values of k  or T , more perturbing 

terms should be taken into account and the number of chains increases as well. Thus, we 

observe that although Hamiltonian (2) presents an infinite number of (4 ,3 )m m  perturbations, 

the number M  of island chains is finite for given values of the wave number and wave period. 

These chains are due to the (4 ,3 )m m  perturbing terms for which m M≤ , since the amplitudes 

of the terms with m M>  are much smaller and they do not generate islands in phase space [6]. 

We also note that the black curves in both panels of Fig. 1 respect the same power law. 

The black curves are the boundaries separating two regions with a different number of chains. 

For each resonance, the boundaries are related to the amplitude of the resonant terms generating 

the islands and they decay as ,1 2
r s

I , where ,r s
I  is given by expression (4). 

Figure 1(a) shows that the (3,7) resonance always presents an even number of chains. It 

is possible to demonstrate that the total number of islands in phase space is always even [6]. 

Thus, the number of chains must be even for the resonances that present an odd number of 

islands in each of its chains. On the other hand, the number of chains may be even or odd when 

the number of islands in each chain is even, as can be seen in Fig. 1(b) for the (4,3) resonance. 

We analysed the dynamics of a relativistic particle moving in a uniform magnetic field 

and perturbed by a stationary electrostatic wave. When the wave is given as a series of periodic 

pulses, we observe that the system presents an infinite number of perturbing terms with the 

same winding number. This superposition alters the number of island chains according to the 

parameters of the wave. 
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Figure 1 (Colour online): Number of chains as a function of k  and T  for the a) (3,7) and b) (4,3) resonances. 

Each colour represents a different number of chains as indicated in the pictures. Since the action is positive 

definite, the (3,7) and (4,3) resonances are not present in phase space for 14 / 3T π<  and 3 / 2T π< , respectively. 

 

We built the parameter space showing the number of chains as a function of the wave 

number and wave period. For all the resonances, we observed that the boundaries separating 

two regions with a different number of chains respect the same power law. This power law is 

related to the amplitudes of the resonant terms that generate the islands of the resonance [6]. 

Another interesting feature of our system is that the number of chains is always even for 

the resonances that present an odd number of islands in each chain [6]. On the other hand, when 

the number of islands in each chain is even, the number of chains may be even or odd. 

We point out that such results are not commonly observed in the literature. It holds for 

systems that are perturbed by an infinite number of terms with the same winding number. 

However, current studies suggest that even systems that have just a finite number of perturbing 

terms may present characteristics similar to the ones we observe in our system. 
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