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Abstract: The derivation of Debye shielding and Landau damping from the N-body descrip-

tion of plasmas requires many pages of heavy kinetic calculations in classical textbooks and

is done in distinct, unrelated chapters. Using Newton’s second law for the N-body system, we

perform this derivation in a few steps with elementary calculations using standard tools of cal-

culus, and no probabilistic setting. Unexpectedly, Landau damping turns out to be one facet

of Debye shielding. This shielding and collisional transport are discovered to be two related

aspects of the repulsive deflections of electrons. Using the shielded potential, the collisional

diffusion coefficient is computed for the first time by a convergent expression including the

correct calculation of deflections for all impact parameters. This paper provides a sketch of the

corresponding derivations which are available in [1, 2].

Fundamental equation for the potential: This paper mainly deals with the One Component

Plasma (OCP) model, which considers the plasma as infinite with spatial periodicity L in three

orthogonal directions with coordinates (x,y,z), and made up of N electrons in each elementary

cube with volume L3. Ions are present only as a uniform neutralizing background, enabling pe-

riodic boundary conditions. The discrete Fourier transform of the electrostatic potential, readily

obtained from the Poisson equation, is given by φ̃(0) = 0, and for m ̸= 0 by

φ̃(m) =− e
ε0k2

m
∑
j∈S

exp(−ikm · r j), (1)

where −e is the electron charge, ε0 is the vacuum permittivity, r j is the position of particle

j, S = {1, . . .N}, φ̃(m) =
∫

φ(r)exp(−ikm · r)d3r, with m = (mx,my,mz) a vector with three

integer components running from −∞ to +∞, km = 2π
L m, and km = ∥km∥.

Let rl0 and vl be the initial position and velocity of particle l, and let δrl = rl − rl0 −vlt. In

the following, we consider the δrl’s to be small. Therefore we approximate φ̃l(m) by ϕ̃l(m), its

expansion to first order in the δrl’s. We further consider φ to be small, and the δrl’s to be of

the order of φ . We now introduce the time Laplace transform which transforms a function f (t)

into f̂ (ω) =
∫ ∞

0 f (t)exp(iωt)dt (with ω complex). We Laplace transform both the potential and
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Newton’s equations of motion for the electrons. Combining the resulting equations yields

k2
m
̂̃ϕ(m,ω)− e2

L3meε0
∑
n

km ·kn ∑
j∈S

̂̃ϕ(n,ω +ωn, j −ωm, j)

(ω −ωm, j)2 exp[i(kn−km)·r j0] = k2
m
̂̃ϕ (0)

(m,ω),

(2)

where tildes (resp. carets) indicate the Fourier (resp. Laplace) transformed versions of the quan-

tities, ωl, j = kl ·v j, and ̂̃ϕ (0)
l (m,ω) is the Laplace transform of φ̃(m) computed by substituting

rl with its ballistic approximation rl0 +vlt in Eq. (1). Equation (2) is the fundamental equation

of this paper. This fundamental equation is of the type E ̂̃ϕ = source term, where E is a linear

operator, acting on the infinite dimensional array whose components are all the ̂̃ϕ(m,ω)’s.

Shielded Coulomb potential: We introduce a smooth function f (r,v), the smoothed velocity

distribution function at t = 0. We assume it to be a spatially uniform distribution function f0(v)

plus a small perturbation of the order of ϕ . We replace the discrete sums over particles in Eq.

(2) by integrals over f (r,v), and we keep the lowest order term in ϕ . Then operator E becomes

diagonal with respect to both m and ω , and Eq. (2) becomes

ε(m,ω) ̂̃Φ(m,ω) = ̂̃ϕ (0)
(m,ω), (3)

where Φ is the new approximation of ϕ , and

ε(m,ω) = 1− e2

L3meε0

∫ f0(v)
(ω −km ·v)2 d3v. (4)

This shows that the smoothed self-consistent potential ̂̃Φ is determined by the response function

ε(m,ω). The latter is the classical plasma dielectric function.

By inverse Fourier-Laplace transform, to lowest order the contribution of particle j to Φ(r)

turns out to be, after some transient whose duration is estimated later with the intuitive descrip-

tion of shielding, the shielded Coulomb potential of particle j

δΦ j(r) = δΦ(r− r j0 −v jt,v j), (5)

where

δΦ(r,v) =− e
L3ε0

∑
m̸=0

exp(ikm · r)
k2

m ε(m,km ·v)
. (6)

Therefore, after this transient, the dominant contribution to the full potential in the plasma

turns out to be the sum of the shielded Coulomb potentials of individual particles located at

their ballistic positions.
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Debye shielding and Landau damping: We now apply the smoothing using distribution

function f to ̂̃ϕ (0)
(m,ω) too in equation (3). To lowest order in the δr j’s, this approximateŝ̃Φ(m,ω) by ̂̃Φ(0)

(m,ω) =− ie
ε0k2

m

∫ f̃ (m,v)
ω −km ·v

d3v. (7)

This shows that this second smoothing makes Eq. (3) to become the expression including

initial conditions in Landau contour calculations of Langmuir wave growth or damping, usu-

ally obtained by linearizing Vlasov equation and using Fourier-Laplace transform, as described

in many textbooks. Therefore, in these calculations, ̂̃Φ(0)
(m,ω) turns out to be the smoothed

version of the actual shielded potential in the plasma.

Intuitive interpretation of Debye shielding: Applying Picard iteration technique to the me-

chanical description of microscopic dynamics with the full OCP Coulomb potential of Eq. (1)

yields the following interpretation of shielding for a particle in the bulk of the distribution

function. At t = 0, consider a set of (uniformly, independently) randomly distributed particles.

Consider a particle l. At a later time t, it has deflected all particles which made a closest ap-

proach to it with an impact parameter b < vtht where vth is the thermal velocity. This part of

their global deflection due to particle l reduces the number of particles inside the sphere S(t) of

radius vtht about it. Therefore the effective charge of particle l as seen out of S(t) is reduced:

the charge of particle l is shielded due to these deflections. This shielding effect increases with

t, and thus with the distance to particle l. As a result, the typical time-scale for shielding to

set in, when starting from random particle positions, is the time for a thermal particle to cross

a Debye sphere, i.e. ω−1
p , which sets the duration of the transients occurring in the inverse

Laplace transform leading to Eq. (5); this order of magnitude is correct for a plasma close to

equilibrium. Furthermore, shielding is a cooperative dynamical process: it results from the ac-

cumulation of almost independent repulsive deflections with the same qualitative impact on the

effective electric field of particle l (if ions were added, the attractive deflection of charges with

opposite signs would have the same effect). It is a cooperative effect, but not a collective one (it

does not involve any synchronized motion of particles). Basic plasma physics textbooks show

the accumulation of almost independent repulsive deflections to produce collisional transport

of particles in plasmas. Unexpectedly, it turns out that Debye shielding is another aspect of the

same two-body repulsive process.

Collisional transport: Collisional transport is described in textbooks with two opposite

points of view. First, the two-body Rutherford collision picture which describes correctly col-

lisions for impact parameters b ≪ d, the interparticle distance; transport coefficients are com-
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puted by an ad hoc extension of the integrals over b up to the Debye length λD ≫ d, and involve

the Coulomb logarithm as a factor with some uncertainty. Second, a mean-field approach based

on the Balescu-Lenard equation which describes correctly collisions for b ≫ d; transport coef-

ficients are computed by an ad hoc extension of the integrals over b down to λma, the classical

distance of minimum approach which is much smaller than d, and involve the Coulomb loga-

rithm as a factor with some uncertainty. The agreement between the two calculations of transport

coefficients gave confidence in their result, but till now no description of collisional transport

has been describing correctly the scales about d.

We provide the first description of this kind by substituting the Coulomb potential in the One

Component Plasma (OCP) model with the shielded potential of Eq. (5). Collisions with impact

parameters b ≫ λma can be described by lowest order perturbation theory. The corresponding

deflection of a given particle turns out to be the sum of two-body Rutherford deflections with

all other particles, as provided by lowest order perturbation theory. This provides a natural

matching with the genuine two-body Rutherford deflection corresponding to b ≪ d. Therefore

all impact parameters are correctly described, the integrals over b do not involve ad hoc cutoffs,

and are convergent thanks to shielding. One recovers the classical formulas for the transport

coefficients with a Coulomb logarithm modified by a term of order 1 having a weak dependence

on the particle velocity.

Conclusion: This new approach provides a unification and a simplification of basic micro-

scopic plasma physics by a straightforward use of N-body classical mechanics. An old dream

comes true: this mechanics can describe non trivial aspects of the macroscopic dynamics of a

many-body system. The present theory has two natural extensions [1]. First, the derivation of the

fundamental equation for the potential can be modified to enable the description of trapping or

chaos due to Langmuir waves. This brings a natural link with previous works on wave-particle

interaction [3, 4]. Second, there is a (more intricate) version of the fundamental equation (2) that

does not involve linearization. It might be used to study the effect of the coupling of Fourier

components with both coherent and incoherent effects.
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