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1. Introduction and summary. In plasma-wall transition (PWT) theory it is common
practice to use the following two simplifying approximations [1,2]: (i) The plasma is assumed
to be semi-bounded, i.e., bounded on only one side by some electrode (“‘wall”), in the vicinity
of which the PWT layer is investigated, but to extend to infinity on the other; (i1) The PWT
layer is split into two sub-layers: the quasineutral “presheath (PS)” and the space-charge-
dominated “(Debye) sheath (DS)”, separated from each other by the “(Debye-)sheath entrance

(SE)”. The characteristic length of the PS isA,  (the relevant collisional or geometrical

length), and that of the DS is A, (the Debye length at the SE), with the additional

approximation & =4, / A, = 0, called the “asymptotic two-scale (a2s) limit”. A good basis

for qualitatively discussing the a2s PS is the fairly detailed quasineutrality condition (n, =n,)

presented in Ref. [1], which for planar geometry reads

[miuf —~ k(Te* + yl.Tl.)] CZC@ =mu,(nv,+28,), (1)
with e the positive elementary charge, k¢ Boltzmann’s constant, m,, u,(x), T,, and y, the ion
mass, fluid velocity, effective temperature and “polytropic coefficient”, respectively, v, the
ion-neutral charge-exchange collision frequency, S, the ionization rate, n,(x) the electron

density and 7 =en,/(kdn,/dV’) the “screening temperature”. It is well known from DS

analysis that at the SE the ions must satisfy the “general Bohm condition (BC)”, u, > c,, with

c, = \/ k (Te* + 7/[7;)/ m, the ion-sound velocity. The BC is called “marginal” or “non-marginal”
if the equality or the greater sign applies, respectively. In [3] it was shown that y, is actually a
polytropic-coefficient function (PCF) defined as y,(x)=1+(ndT,/dx)/(T,dn,/dx). Let us

call “collisional” a PS in which charge exchange and/or ionization are important

(Ap << A, <L, with L the diode length), and “collisionless” one in which these processes are

negligible (1, <<L<A4,).
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For a collisional PS the right-hand side (rhs) of Eq. (1) does not vanish identically, so

|dne / dx| normally tends to infinity where the bracket in front of it tends to zero. Hence, the

vanishing of the bracket, which corresponds to the marginal BC u, =c , is normally

connected with the “sheath singularity”, which indicates the breakdown of quasineutrality
and, hence, the SE. Note, however, that in reality the parameter £ may become arbitrarily
small but never exactly zero so the so-called “sheath singularity” is actually an arbitrarily
narrow spatial region with arbitrarily steep but still finite gradients. As a consequence, the SE
“looks” like a singularity if viewed on the PS scale (x/A,) but shifts towards infinity if
viewed on the DS scale (x/A4,).

For a collisionless PS the rhs of Eq. (1) vanishes identically. If the collisionless PS considered

is uniform, dn,/dx vanishes throughout and the bracket need not vanish for Eq. (1) to be

satisfied. This is, to a very good approximation, the case for the monotonically decreasing
potential distributions in a sufficiently long plane single-emitter diode (Sec. 2), where the PS

((n,—n,)/n,—>0,, dn,/dx—0_) and the DS (n,>n,) extend to the left and right,
respectively, of the “plasma point” (the point of exact electric neutrality, n, =n,), which thus

marks the DS entrance, cf. Fig. 1. Here, the ions enter the DS with the non-marginal BC

u, > c,, with the exact values of u, and ¢, depending on the diode parameters as presented in

Sec. 4.

In this paper we for the first time investigate the BC in a fully bounded but collisionless
plasma and, as argued above, find it to be of the non-marginal type. To be specific, we discuss
the problem for the standard plane-diode model of the single-emitter (“single-ended”) QO —
machine or thermionic converter [4-8], making explicit use of existing results that are of
immediate relevance.

2. The collisionless single-emitter plane-diode model [4-8]. We assume a hot plate at x =0
and a non-emissive, perfectly absorbing cold plate at x = L, the intervening space being filled
with a collisionless plasma consisting of electrons, singly charged ions, and the related
neutrals. The plasma is produced at the hot plate by thermal emission of electrons and surface
ionization of neutrals, the desorbing particles being assumed to leave the hot plate with half

Maxwellian velocity distribution functions (VDFs). We use the desorbing-electron and
desorbing-ion number densities at the hot plate, n), and n;, as well as the hot-plate

temperature 7 as scaling quantities for the definition of non-dimensional variables as follows:
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for the position coordinate, number densities, single-particle and fluid velocities, effective
temperatures, the neutralization parameter « , the electric potential, electric-current densities,

particle VDFs and the mass ratio u, respectively; v,, =+/2kT/m, is the electron thermal

velocity and A}, =./g,kT/ (eznjo) is the “electron emission Debye length”. From now on we
proceed in dimensionless Variableﬁz With a, =1 anda, = a we have for the fluid quantities

e,

Qa,; Jdvvfe,i , Te :i _[d"(v—ue)zfe , ]: =2_a J.dv(\/'_ui)zfi . (3)
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Poisson’s equation for ¥(x) and the Vlasov equations for the VDFs f, ; read

dv of. of. OF. of,
—n—n.(4a Ye _pYe_q, (4b CipumLi-0, (4e). (4
dx? ne = (42) Y ox Ov (4b) Y Ox ov (40) @)

3. Monotonically decreasing potentials. We specifically consider potential profiles

decreasing monotonically from 7 =0 at x =0 to some negative value V' =U at x=L, for

which we can solve Egs. (4b, c¢) with the appropriate boundary conditions to obtain the VDFs

L) =—2explV v+ T =T ) £ (Vovip)=—2 exp(—V v/ p)H (v=-@)s (5
Jr Jru
where H(s) is the Heaviside step function. Hence by virte of (3) we obtain the de\ésities

n VU= (ef W -U), n(Via)=am(V), aF)=c'(i-efy-V), (©)
g 2
where erf & = (2/ Jr )Idte_’ . Inserting (6) into Poisson’s equation (4a) and integrating once

we arrive at the following differential equation, which is starting point of our discussions:

v _ 2JE2-S(V), with S(V;U,a)=S,(V;U)-aS,(V), (7)

dx

5,(v) :%{e_V(l—elf\/j)—lJr%ﬁ}, ®)

S.(riU)= %{1 verfN=U ¢ (L+erfV - U)—%e[] V=U - —U)}. ©)

Here E, 1is the electric field atx=0. On differentiating Eq. (7) we obtain
d 2V/ dx’ =-2dS/dV , which means that the curvature properties of V(x) follow the slope

properties of the functionS(V). The inflection points of ¥(x) occur at those values of

dSe/dSl.: ¢ 1+ erf v -U)

vl dv - l—erfA-V

¥V where S(V) assumes extreme values, i.e., v(V;U)= =a.



40" EPS Conference on Plasma Physics P1.410




