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1. Introduction and summary. In plasma-wall transition (PWT) theory it is common 

practice to use the following two simplifying approximations [1,2]: (i) The plasma is assumed 

to be semi-bounded, i.e., bounded on only one side by some electrode (“wall”), in the vicinity 

of which the PWT layer is investigated, but to extend to infinity on the other; (ii) The PWT 

layer is split into two sub-layers: the quasineutral “presheath (PS)” and the space-charge-

dominated “(Debye) sheath (DS)”, separated from each other by the “(Debye-)sheath entrance 

(SE)”. The characteristic length of the PS is psλ  (the relevant collisional or geometrical 

length), and that of the DS is Dλ  (the Debye length at the SE), with the additional 

approximation 0→= psD λλε , called the “asymptotic two-scale (a2s) limit”. A good basis 

for qualitatively discussing the a2s PS is the fairly detailed quasineutrality condition ( ie nn = ) 

presented in Ref. [1], which for planar geometry reads 

 ( )[ ] ( )icieii
e

iieii Snum
dx
dnTTkum 2*2 +=+− νγ ,  (1) 

with e  the positive elementary charge, k  Boltzmann’s constant, im , ( )xui , iT , and iγ  the ion 

mass, fluid velocity, effective temperature and “polytropic coefficient”, respectively, ciν  the 

ion-neutral charge-exchange collision frequency, iS  the ionization rate, ( )xne  the electron 

density and ( )dVkdnenT eee /* ≡  the “screening temperature”. It is well known from DS 

analysis that at the SE the ions must satisfy the “general Bohm condition (BC)”, si cu ≥ , with 

( ) iiies mTTkc γ+≡ *  the ion-sound velocity. The BC is called “marginal” or “non-marginal” 

if the equality or the greater sign applies, respectively. In [3] it was shown that iγ  is actually a 

polytropic-coefficient function (PCF) defined as ( ) ( ) ( )1 / /i i i i ix n dT dx T dn dxγ = + . Let us 

call “collisional” a PS in which charge exchange and/or ionization are important 

( LpsD <<< λλ , with L  the diode length), and “collisionless” one in which these processes are 

negligible ( psD L λλ <<< ). 
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For a collisional PS the right-hand side (rhs) of Eq. (1) does not vanish identically, so 

dxdne  normally tends to infinity where the bracket in front of it tends to zero. Hence, the 

vanishing of the bracket, which corresponds to the marginal BC si cu = , is normally 

connected with the “sheath singularity”, which indicates the breakdown of quasineutrality 

and, hence, the SE. Note, however, that in reality the parameter ε  may become arbitrarily 

small but never exactly zero so the so-called “sheath singularity” is actually an arbitrarily 

narrow spatial region with arbitrarily steep but still finite gradients. As a consequence, the SE 

“looks” like a singularity if viewed on the PS scale ( Dx λ/ ) but shifts towards infinity if 

viewed on the DS scale ( Dx λ/ ). 

For a collisionless PS the rhs of Eq. (1) vanishes identically. If the collisionless PS considered 

is uniform, dxdne  vanishes throughout and the bracket need not vanish for Eq. (1) to be 

satisfied. This is, to a very good approximation, the case for the monotonically decreasing 

potential distributions in a sufficiently long plane single-emitter diode (Sec. 2), where the PS 

( ( ) +→− 0eie nnn , −→ 0dxdne ) and the DS ( ei nn > ) extend to the left and right, 

respectively, of the “plasma point” (the point of exact electric neutrality, ie nn = ), which thus 

marks the DS entrance, cf. Fig. 1. Here, the ions enter the DS with the non-marginal BC 

si cu > , with the exact values of iu  and sc  depending on the diode parameters as presented in 

Sec. 4.  

    In this paper we for the first time investigate the BC in a fully bounded but collisionless 

plasma and, as argued above, find it to be of the non-marginal type. To be specific, we discuss 

the problem for the standard plane-diode model of the single-emitter (“single-ended”) Q –

machine or thermionic converter [4-8], making explicit use of existing results that are of     

immediate relevance. 

2. The collisionless single-emitter plane-diode model [4-8]. We assume a hot plate at 0=x  

and a non-emissive, perfectly absorbing cold plate at Lx = , the intervening space being filled 

with a collisionless plasma consisting of electrons, singly charged ions, and the related 

neutrals. The plasma is produced at the hot plate by thermal emission of electrons and surface 

ionization of neutrals, the desorbing particles being assumed to leave the hot plate with half 

Maxwellian velocity distribution functions (VDFs). We use the desorbing-electron and 

desorbing-ion number densities at the hot plate, +
0en  and +

0in , as well as the hot-plate 

temperature T  as scaling quantities for the definition of non-dimensional variables as follows: 
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     xx De →
+λ/ ,  ieeie nnn ,0, / →+ ,  ieTeie vvv ,, / → , ieTeie uvu ,. / → ,  ieie TTT ,, / → ,  ,/ 00

++= ei nnα  

     ( ) ( ) ( )xVkTxeV →/ ,    ( ) ieTeeie jvenj ,0, / →+ , ,/ 0,
+
eTie nvf

e
 ie mm /=µ  (2) 

for the position coordinate, number densities, single-particle and fluid velocities, effective 
temperatures, the neutralization parameter α , the electric potential, electric-current densities, 
particle VDFs and the mass ratio µ , respectively; eTe mkTv /2= is the electron thermal 

velocity and ( )2
0 0/De ekT e nλ ε+ +=  is the “electron emission Debye length”. From now on we 

proceed in dimensionless variables. With 1eα =  and αα =i  we have for the fluid quantities 

∫
+∞

∞−

= ieieie dvfn ,,, α ,  ∫
+∞

∞−

= ie
ie

ie
ie dvvf

n
u ,

,

,
,

α
, ( )∫

+∞

∞−

−= ee
e

e fuvdv
n

T 22 ,  ( )∫
+∞

∞−

−= ii
i

i fuvdv
n

T 22
µ
α . (3) 

Poisson’s equation for ( )xV  and the Vlasov equations for the VDFs ,e if  read 

 ie nn
dx

Vd
−=2

2

, (4a)          0=
∂
∂

−
∂
∂

v
fE

x
fv ee , (4b)          0=

∂
∂

+
∂
∂

v
fE

x
Fv ii µ , (4c). (4) 

3. Monotonically decreasing potentials. We specifically consider potential profiles 

decreasing monotonically from 0=V  at 0=x  to some negative value UV =  at Lx = , for 

which we can solve Eqs. (4b, c) with the appropriate boundary conditions to obtain the VDFs 

   ( ) ( ) ( )UVvHvVUvVfe −+−= 2exp2;,
π

,    ( ) ( ) ( )22, ; exp /if V v V v H v Vµ µ µ
π µ

= − − − − , (5) 

where ( )sH  is the Heaviside step function. Hence by virtue of (3) we obtain the densities 

 ( ) ( )UVerfeUVn V
e −+= 1; ,     ( ) ( );i in V n Vα α= ,     ( ) ( )VerfeVn V

i −−= − 1 , (6) 

where ( ) 2

2 t

o

erf dte
ξ

ξ π −= ∫ . Inserting (6) into Poisson’s equation (4a) and integrating once 

we arrive at the following differential equation, which is starting point of our discussions: 

 ( )VSE
dx
dV

−−= 2
02 ,    with   ( ) ( ) ( )VSUVSUVS ie αα −= ;,; , (7) 

 ( )VSi ( )






 −+−−−= − VVerfe V

π
211

2
1 , (8) 

 ( )UVSe ; ( ) ( ) .211
2
1







 −−−−−+−−+= UVUeUVerfeUerf UV

π
 (9) 

Here 0E  is the electric field at 0=x . On differentiating Eq. (7) we obtain 

dVdSdxVd 222 −= , which means that the curvature properties of ( )xV  follow the slope 

properties of the function ( )VS . The inflection points of ( )xV  occur at those values of 

V where ( )VS  assumes extreme values, i.e., ( ) ( )
αν =

−−
−+

≡≡
Verf

UVerfe
dV
dS

dV
dSUV

V
ie

1
1;

2

. 

40th EPS Conference on Plasma Physics P1.410



The function ( )UV ;ν  has just one maximum and satisfies ( ) ( )UUU ;0; νν < . Hence, we have 

only one real solution, i.e, only one inflection point ( pVV = ) if ( ) ( )UUU ;0; ναν ≤≤ . At this 

inflection point the quasineutrality condition, ( ) ( )pipe VnUVn =; , is fulfilled, which is why we 

call it the “plasma point” and consider it as marking the DS entrance. 

4. Numerical example demonstrating the non-marginal BC  

From (3) we also find /i iu nµ π= . 

Hence the ratio /i su c  is given by 

1
2

21 .
2 / /

i e i
i

s e i

u n nn
c dn dV dn dV

π
−

  
= + −     

(10) 

In Fig. 1 the potential V  and the ratio i su c  

are plotted versus x  for the diode 

parameters 2−=U , 30.1=α  and 19L = . The square points on the curves indicate the 

inflection (“plasma”) point, for which from Eqs. (6) and (10) we calculate 24.1−=pV  and 

1.85i su c = , respectively. This means that, as expected from the discussion of Sec. 1, the BC 

is fulfilled in non-marginal form. In a next step towards physical reality we will consider a 

diode containing collisional plasma.  
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