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1. Introduction

Fully noninductive operation (fy=I\/l,=1) is planned for many next-step tokamaks,
including ITER, FNSF-AT [1], and DEMO. A possible scenario for achieving high fusion
gain, high bootstrap current fraction (fz=Is/I;) operation is to use an elevated minimum
safety factor (q,,,) and high normalized S, (By), since fzs*f,,%qBy and fusion power m[a’é.
On DIII-D, neutral beam injection (NBI) and electron cyclotron (EC) waves are used for
heating and current drive. NBI is the primary tool for attaining high By on DIII-D but high
power on-axis NB current drive (NBCD) tends to drive peaked current density profiles and
low g,,,.- Therefore one of the four
beamlines was upgraded to provide a
flexible injection angle between 0°
and 16.5° to horizontal (Fig.1).
When the magnetic field pitch is
aligned with the beam injected at

16.5°, significant off-axis current

drive was predicted and confirmed

to exist [2]. This current density is
distributed Widely about the plasma lgllgllll_r]f; .1. 5 MW of off-axis neutral beam injection 16.5° to horizontal on
half-radius.

Compared to on-axis heating, off-axis heating reduces the on-axis pressure and current
density, effectively broadening both profiles which is known to increase the Sy limit due to
ideal-wall kink modes [3]. Off-axis NBI was used in steady state experiments that had two
goals. The first was to demonstrate ¢,,,>2 and [y >4 plasmas with broad current and
pressure profiles — conditions expected in a steady state DEMO. Broad profiles are expected
to have high f limits due to increased wall stabilization, and good confinement due to a large
volume of weak or negative magnetic shear [4]. The second goal was to extend high

performance elevated g,,;, operation to multiple current profile relaxation time scales (1) to
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confirm passive stability of tearing modes and provide a demonstration of conditions that
could be useful for ITER and FNSF.

II. Exploration of Access to ¢,,;,, > 2, High B, Operation

Broader current and pressure profiles have been achieved using off-axis NBI compared to
on-axis NBI. Previous experiments using only on-axis NBI and ~2.25 MW of off-axis
electron cyclotron current drive (ECCD) showed that it is difficult to sustain g,,;, above 2 at

Pu=27, B,=2.1T, and g =6.7. These conditions were reproduced with the following

3 16635 14476 - changes: (1) up to 4 MW off-axis NBI, (2)
Bn 20000 N ..

2 o B \ an additional ~1 MW of EC power, and
1 /J (3) reversed toroidal field polarity to max-
: Gmin /\ ] ] imize off-axis NBCD. Figure 2 compares
) With eft-axis NBI =™ N on key equilibrium quantities obtained with
A _ Only on-axis NBI — - and without off-axis NBI. The plasma
3 P(0)KP) AW r heated by off-axis NBI was sustained with
AN Guin =~ 2.4 and 0, = 0.3 at By~ 2.7 for as
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0 1 2 3 4 long as NBI energy was available. The
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Fig. 2. Using off-axis NBI improves access to and sustainment of pressure proflle peaklng factor was re-

broad current and pressure profiles with g,;, > 2.

duced from ~3.5 down to ~2.5. The pres-
sure profile broadening is due chiefly to a less peaked fast ion pressure profile and increased
electron heating at mid-radius by the off-axis NBI and ECCD, and to a lesser extent by
reduced divertor pumping.

Plasmas produced with the highest values of ¢, (2-3) typically had a thermal energy
confinement time (computed using the measured thermal profiles) that matched or exceeded
the ITER98y?2 thermal confinement scaling prediction [5]. However the same plasmas had a
~18% lower global energy confinement scale factor Hgy, (thermal+fast ion, [6]) than plasmas
with ¢, between 1 and 1.5. This suggests enhanced fast ion loss at higher ¢,,;, and qualitative
evidence for this is seen by increased Alfvén eigenmode activity with increasing q,,,. While
the ¢,.,>2 plasmas have calculated ideal-wall n=1 S limits in excess of 4, with the
available heating power the maximum pSy achieved with g,,;, > 2 was ~3.3. On-going work is
focusing on new fast ion and turbulence measurements for a more detailed understanding of
the relatively poor fast ion confinement in these plasmas to determine if the dominant trans-

port mechanisms can be mitigated.

IT1. Extension of High Performance, Quasi-Stationary Operation to 27

Off-axis NBI has proved beneficial for achieving discharges with modest ¢, (1.3-1.8) to
optimize profiles for stability and sustain them for a suitable duration. Such plasmas have

been shown [7] on DIII-D to be promising candidates for long pulse or fully noninductive
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operation on an ITER-sized machine with pro-

jected fusion gain Q=5. The m/n=2/1 tearing

mode is the most common instability that can

terminate good performance, and this is sensitive

to the current profile and the proximity to the
ideal-wall n=1 kink mode Sy limit [8]. The
demonstrations of nearly or fully noninductive

operation on DIII-D have been limited to dura-

tions less than 1 7; and Sy close to predicted ideal
MHD limits [9]. When operating close to stability

limits one must evaluate the evolution of the
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current profile to a stationary state over several 1z

to demonstrate access to and robustness of the

Fig. 3. High performance quasi-stationary plasma

duration extended by using off-axis current drive.
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Fig. 4. At the end of the high S phase the
loop voltage is approaching the fully re-
laxed value predicted by FASTRAN [12].
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Fig. 5. With a nearly relaxed loop voltage and
~70% noninductive fraction q,,, stays near

14.

target equilibrium. Better still is to adjust the
plasma parameters to raise the stability limit far above the
required operating pressure.

Using off-axis NBI, quasi-stationary plasmas have
been produced without tearing modes for 27; with ¢,,;, =
1.4, By =3.5, 50% bootstrap current, 70—75% noninductive

current, and an equivalent fusion gain that projects to Q=5

in an ITER-sized device. The duration is limited by the
NBI energy. This surpasses earlier results in similar
plasmas lacking off-axis NBI and with less ECCD power
that were stationary for 1 7; (Fig. 3, black traces). The loop
voltage profile is nonzero but relatively uniform by the end
of the high f phase (Fig. 4), and ¢, does not evolve to 1

in experiment or simulation [10] (Fig.5). Ideal stability

P — R S S - analysis using the
Ideal-Wall Limit (DCON) n=1
DCON code [11] pre-
S 1 dicts the no-wall n =1
4k 4 kink mode Sy limit is
B J"AM/\M“ in the range of 3-3.4,
3 while the ideal-wall
2t 1 n=1 By limit is 4-5.
: (Fig. 6). Compared to
2 3 . 5 6 similar plasmas with-
Time (s) )
, , , out off-axis NBI, the
Fig. 6. Calculated ideal n=1 kink fy
limits. pressure profile is less
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peaked, and this contributes to the high calculated B limits. Replacing the remaining
inductive current density in these plasmas will require more current drive power and operation

close to the predicted ideal wall S limit for higher bootstrap fraction.

IV. Summary

On DIII-D, progress has been made in elevated g,,;, steady state scenario development by
using off-axis NBI. Current and pressure profile broadening enables access to higher ideal
MHD py limits. Plasmas with ¢,,;, > 2 so far have lower normalized energy confinement Hggp
than similar plasmas with lower ¢g,,,. Plasmas with ¢,, =~ 1.4 have been taken to nearly
stationary conditions for 2 1 at By =3.5.
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