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In tokamaks the energy confinement time increases almost linearly with current, Ip, hence
the interest to maximize it for given toroidal field, Br. Since first experiments, though, a
severe Ip limit at fixed Bt was found [1]. This is set by the external kink mode, which is
unstable above a critical Ip/Bt ratio [2]. In terms of edge safety factor, this occurs at q(a)=
aB1/(RBp)=2. Several experiments confirmed this limit with qos, the relevant parameter in
diverted tokamaks. If the wall resistivity is included, the external kink converts into a
resistive-wall mode (RWM), its growth rate being reduced to 1/tw, the inverse wall
penetration time, which allows its feedback control. Recently, this limit was overcome in
RFX-mod run as a low-Ip, circular tokamak by magnetic feedback control of the m=2/n=1
RWM [3]. This motivated further experiments in a larger tokamak, which were performed

in DIII-D and confirmed that the qos=2 limit can be overcome by MHD stability control.

Low-qos operation, even with _ s s
S 10F
gos>2, requires careful design of the = 0sy
g 150
=

discharge setup, to avoid m>2/n=1 3o

external kinks that can grow as qos © °°:

decreases. Being driven by the edge 415

current gradient, they can be avoided by 11

keeping it low, e.g. by slowly ramping  ¢5-

3 ©) -
Ip. Fig. 1 shows a stable L-mode DIII-D Si 2 PMMWMWW* -

t=4.025s

discharge with qos=2.2 obtained by a 0% i

time (s)

slow Ip ramp. Also other aspects Figure 1. Main waveforms and shape of a qgs=2.2 plasma.
affecting stability were optimized. The shape was tailored to minimize the wall distance, to
help passive MHD stability. NBI was added to spin-up the plasma and avoid tearing mode

locking. Static n=1 error fields (EF) were compensated with external coils by the compass-
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scan technique. These plasmas have regular sawtooth activity. The safety factor on-axis is
close to 1 and the current profile does not significantly evolve during flattop, as indicated
by the internal inductance in panel (d). The confinement performance, represented by the
ratio between the measured energy confinement time and the L-mode 89P scaling in panel

(e), is degraded by about 20% with respect to L-mode performance similar to [4].
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compared with two attempts to qq5<2 without
to voltage limits reached in the power supplies. (red)and with RWM feedback (blue).
Confinement degradation up to 50% occurs as qos<2.1, as shown in Fig. 2(d). However, it
was not the aim of these first experiments to optimize confinement. A single attempt to
obtain H-mode led to modest values of Hgop=1.5 and Bn=1.1, which nonetheless results,
thanks to the low (qos=1.95, in significant normalized fusion performance

G=H89p[3N/q952=0.43 [5]. Future work should focus on sustaining a qos<2 flattop and

optimizing confinement, to evaluate the real benefits of low-qos operation on performance.
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rotation. Compensation of n=2 EF may help to avoid 3%E N
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Figure 4. B, n=1 amplitude and phase as
Jgs approaches 2 and at the RWM onset.
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Figure 5. RWM feedback dynamics.
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feedback increases the current request, which eventually saturates. As a result, control is

lost and disruption follows. This is thus due to a technical limit, not to a physical one.

To interpret these results and improve 2% T @ ko @
RWM control, a simple model developed for
RFX-mod was used [3]. This is a cylindrical,

linear MHD model of the RWM, including a
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mimic sawteeth. With these inputs full RWM time(s) time(s)
suppression and no mode rotation are predicted. Figure 6. Simulations of RWM feedback.
The only way to have mode rotation is to add a small error in the n=1 phase. This may be
due to imperfect match between mode and coils, or to delays due to wall screening. Fig. 6
shows two simulations at different proportional gain with 7.5deg error. At higher gain,
feedback reduces the mode faster, but it also induces rotation at a frequency similar to the
experiment. A phase error could be easily compensated in the experiment. In this case, the
model would predict RWM stabilization and much lower current request.

The first q9s<2 operation of a large, D-shaped tokamak was obtained in DIII-D by
MHD stability control. Even if these results are limited to L-mode and RWM control needs
to be optimized, no intrinsic physics limits to q¢s<2 operation were found, which opens an
interesting perspective for this new operation. Moreover, even without effort to

confinement optimization, initial H-mode results indicated promising fusion performance.
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