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The transition to the high confinement regime, or L-H transition, can occur spontaneously

in toroidal magnetic fusion machines when externally injecting power into the plasma [1] and

is generally followed by quasi-periodic relaxations of the barrier called Edge-Localised Modes

(ELMs) [2]. Since the profits of H-mode can be counterbalanced by the harmful nature of ELMs,

thorough understanding of the phenomenon is desirable, but remains shallow for the theoretical

part [3, 4]. In particular, plasma edge turbulence simulations based on first principles show

self-generation of sheared flows and subsequent turbulence reduction, but no clear transition is

observed [4].

Here the non-linear evolution of electrostatic resistive ballooning turbulence in 3D toroidal

geometry is described with the following reduced MHD model, in the limit of large aspect ratios

and with the slab approximation:
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With the two fields φ and p being respectively the electrostatic potential and the total pressure.
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, with Lp the characteristic length of pressure gradient. ∇‖,⊥ are the parallel/perpendicular

gradient and G is a toroidal curvature operator. In eq.(2), χ‖ and χ⊥ account for the parallel and

perpendicular collisional heat diffusivities, while in eq.(1), one finds the classical viscosity ν⊥.

A term accounting for neoclassical friction between trapped and circulating particles is added

in the model: Fneo =−µneo
(
∂xφ̄ −Kneo∂x p̄

)
, where f̄ represents the axisymmetrical part of the

field f = f̄ + f̃ , with f̃ the corresponding perturbation. This term is derived using the radial

force balance equation [5, 6]:
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The toroidal velocity is then assumed small in the absence of torque injection, Bϕ ≈ B0 in the

large aspect ratio limit. The neoclassical poloidal velocity is given by: ūneo
i,θ = K (νi,∗)

∂rT̄i
eB0

[5, 6],
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with K (νi,∗) comprised between −2.1 in the Pfirsch-Schlüter regime and 1.17 in the banana

regime. Since our model only accounts for the total pressure, neither for density nor tempera-

tures, additional hypotheses are needed for introducing a self-consistent friction term: a fixed

ratio between the temperatures Ti = εT Te is assumed, as well as a constant density so the ion

temperature gradient can be written in terms of total pressure. K (νi,∗) and µneo are determined

using approximate fits that can be found respectively in [5] and [7]. This last point is motivated

by the strong variations of µneo and Kneo at the edge, and by the fact that no transport barrier

was triggered during preliminary simulations using constant coefficients.

The MHD model can be further simplified by considering the flute approximation k‖ = 0 and

retaining only one poloidal mode of wavenumber k, resulting in the following 1D system [8]:
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With the equilibrium poloidal velocity V̄ = ∂xφ̄ . The α f
∣∣ f̃ ∣∣2 f̃ terms account for saturation

via mode coupling. Here t is normalised by 1
ωS

= mi
eB0

, x by ρS =
√

mikBTe
eB0

. Lp = ρS.

3D simulations are carried out using the EMEDGE3D code [9]. The simulation domain cor-

responds roughly to 0.85 < ρ < 1 and is bounded by buffer zones where the turbulence is arti-

ficially stabilised by large χ⊥ and ν⊥. All simulations are flux-driven by a source S (x) located

in the x < xmin buffer zone, with the amplitude S0 =
∫

S (x)dx. The safety factor is hyperbolic,

between q(xmin) = 2.5 and q(xmax) = 3.5 .
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Figure 1: Evolution of the confinement efficiency as a function of the heat source amplitude in the 1D case.
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In the 1D case, partial stabilisation of the turbulence is achieved above a certain thresh-

old of the injected power, as shown on Figure 1. In the parameter range considered so far, it

turns out that the collisional and turbulent fluxes are of the same order of magnitude (Figure 1,

right panel). The main interest of these results resides in the dynamics of the system once the

turbulence level is strongly reduced: here turbulence is not completely suppressed but shows

instead quasi-periodic bursts. Interestingly the pseudo-period increases with the injected power

(see Figure 2). This behaviour bears similarities with type-III ELMs, which were shown to be

governed by the resistive ballooning instability [10].
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Figure 2: Time evolution of the turbulent flux at the position of the barrier for different heat source amplitudes in

the 1D case. The y-axis of the three curves are at the same scale.

Since the 1D model naturally offers a simpler picture of the phenomenon, let us now consider

the 3D model. Here the parameters are chosen close to the experiment, corresponding to the

geometry of a TEXTOR-like machine. This is with the exception of ν⊥ and χ⊥, chosen large

enough so as to ensure damping at sub-Larmor scales. When increasing the neoclassical friction

coefficient µneo, above a certain threshold, a transport barrier is generated at the edge. Here,

apart from the region where the barrier exists, the collisional flux is very small compared to the

turbulent flux, in agreement with experimental conditions. The reduction of the turbulent flux

observed at the barrier position is caused by the generation of a strongly sheared radial electric

field when the friction term becomes dominant. Although the scrape-off layer physics is not

included in the model, its radial profile shows the well characteristic of H-mode (see Figure 3,

right panel) and is in good qualitative agreement with experimental measurements [11]. It is

also observed that the location of the barrier is governed by the local neoclassical regime, more

precisely at the transition from Pfirsch-Schlüter to plateau regime, where the gradient of Kneo is

the strongest. This position coincides with a maximum of µneo, i.e. a maximum of the friction
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effect. Notice also that no relaxations of the barrier were observed yet in the 3D case.
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Figure 3: Pressure and radial electric field profile showing a barrier in the 3D case. The fine solid lines show the

standard deviation to the mean profile, the vertical dashed lines are the boundaries between the main simulation

domain and the buffer zones.

In conclusion, we have shown, by means of both 1D and 3D models for edge turbulence,

that allowing relaxation of the poloidal flow towards a self-consistent neoclassical value can

generate a transport barrier associated with a strong sheared flow. Its characteristics are in good

agreement with experimental measurements in the 3D case. Furthermore, while the 1D model

useholds strong simplifications, it shows that the shear associated with neoclassical rotation in-

creases with the injected power leading to less frequent bursts. This corresponds to experimen-

tal observations for type-III ELMs [2], which can be described by the sole resistive ballooning

instability [10], as opposed to type-I ELMs which are governed by the peeling-ballooning in-

stability [2]. This work has been supported by the French National Research Agency, project

ANR-2010-BLAN-940-01.
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