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Introduction: Due to their role in suppression of turbulence in tokamaks [1], geodesic acoustic

modes (GAM) [2], also recognized as a high frequency branch of zonal flows (ZF), have been

widely investigated in fluid [3, 2] and kinetic [4, 5] models. The kinetic model predict the GAM

frequency to be of the form: ω2
gam = (Ωg0 + smaller order terms)vTi/R0 where Ω2

g0 = 7/4+ τe,

τe = Te/Ti, R0 is the major radius of the tokamak and v2
Ti
= 2Ti/mi.

GAM are believed to be part of drift wave (DW) turbulence and for this reason investigation

of diamagnetic effects caused by density and temperature gradients may help to understand

the turbulence suppression mechanism, which is an essential issue in fusion science. In [6]

using a two fluid model it was shown that for ηi = ∂r lnTi/∂r lnn0 > 3/4, a non oscillatory

instability takes place and the growth rate of this instability is proportional to ηiω∗e, where

ω∗e = Te/eBrLN is the electron drift frequency, L−1
N = ∂r lnn0 is the characteristic scale scale

length of the density gradient. Corrections of O(q−2) (q is the safety factor) which was not

included in [6] is computed in this paper up to first order.

It is also important to determine the characteristic time scale for the GAM existence which

can be obtained from the computation of the damping rate. Collisionless damping via Landau

mechanism is a fundamental proccess characterised by the wave-particle interaction was inves-

tigated in [7, 5] considering GAM without diamagnetic effects.

Here we complement the work of [6] by using a gyrokinetic linearised model to investigate

GAM and their related modes in the presence of density and ion temperature gradients (dia-

magnetic effects) taking into account ion Landau damping. Three modes are found and their

respective collisionless damping rate.

The model: We start with the gyrokinetic equation as derived by[8],(
∂

∂ t
+vgα

·∇
)

g̃α = eαJ0(k⊥v⊥/ωcα
)

(
∂FMα

∂Eα

∂

∂ t
+

b×∇FMα

mαωcα

· ik⊥
)

Φ̃ (1)

to find the perturbed distribution function, f̃α = eαΦ̃∂FMα
/∂Eα + g̃α exp(ik⊥ ·ρα), which is

an expansion of the equilibrium energy, Eα = v2/2mα (Φ0 = 0 in non rotating systems). The

subscript α labels for ions and electrons of the hydrogen plasma that we consider, eα , mα

and ωcα
= eB/mα > 0 stands respectively for the charge, mass and gyrofrequency, FMα

is the

40th EPS Conference on Plasma Physics P2.183



Maxwellian equilibrium distribution, J0(x) is the zero order Bessel function, ρα = b×v⊥/ωcα

is the vectorial gyroradius and k⊥ ≈ êrkr + êθ k̂θ is the perpendicular wave vector. We consider

perturbations with intermediate wave length, r−1� kr � ρ
−1
i . The following methodology is

then applied: First, by solving the gyrokinetic equation we obtain the perturbed distribution

function as f̃α = f̃α(Φ̃(r),θ), where Φ̃ is the perturbed electrostatic potential. Then integra-

tion of f̃α in velocity space, 〈...〉=
∫ 2π

0 dγ
∫

∞

0 dv⊥v⊥
∫

∞

−∞
dv‖(...) must be performed to find the

density, ñα . In this part it is useful to use the relation exp(ik⊥ ·ρα) = J0(k⊥v⊥/ωcα
) [8] where

(...) denotes the average over the gyro-angle, γ . Since GAM are low frequency modes, by de-

termining ñα we can apply the quasi-neutrality condition, e(ñi− ñe) ≈ 0, to obtain the desired

frequency in the continuum.

In the equilibrium the guiding center velocity is governed by the parallel motion and the

vertical drift due to the gradient and curvature of the magnetic field (B), i. e.,

vgα
= v‖b+

b
ωcα

R0
×
(

v2
⊥
2

∇ lnB+ v2
‖κ

)
, (2)

where b = B/B and κ = b ·∇b. For a high aspect ratio tokamak (r� R0) the calculation of vgα

in (2) is simplified and from the substitution of (2) in (1) we obtain a tractable equation,[
1−

k̂‖v‖
ω

+
ωdα

ω

(
v2
⊥

2v2
Tα

+
v2
‖

v2
Tα

)
sinθ

]
g̃α = J0(bα)

eαFMα

Tα

(
1− ω∗α

ω
∇ lnFMα

)
Φ̃, (3)

where k̂‖=(∂θ +q∂φ )/qR0, ωdα = vTikrρi/R0, bα = krv⊥/ωcα
, ω∗α =Tα/eαBrLN and ∇ lnFMα

=

[1+ηα(v2
⊥/v2

Tα
+v2
‖/v2

Tα
−3/2)]/LN . To solve (3) we consider only the poloidal m = 0,±1 and

toroidal n = 0 harmonics in g̃α = ∑m,n gα(r)exp [i(mθ −nφ −ωt)].

The quasi-neutrality condition can then be organized as follows:

e2n0

Ti

(
1 sinθ cosθ

)
R00 R0s R0c

Rs0 Rss Rsc

Rc0 Rcs Rcc




Φ̃0

Φ̃s

Φ̃c

= 0. (4)

where Rab (a,b = 0,s,c) represent long expressions scaling to

R00 ∼ k2
r ρ

2
i , Rs0 ∼R0s ∼R0c ∼Rc0 ∼ krρi, Rss ∼Rcc ∼Rsc ∼Rcs ∼ 1. (5)

These terms are dependent of the plasma dispersion function, Z(x)= π−1/2 ∫ ∞

−∞
dyexp(−y2)/(y−

x), coming from the integration of the parallel velocity. Further analytical computation is possi-

ble in the limit |x| � 1, in which, according with [9], Z(x)≈ 2i
√

π exp(−x2)− (1/x+1/2x3 +

3/4x5 + 15/8x7 +O(1/x9)) if we consider Im(x) < 0. The dispersion relation can be conve-

niently written as

D(Ω) = F (Ω)+K (Ω)i
√

πq5 exp(−q2
Ω

2) (6)
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where

F (Ω)≈Ω
6− (Ω2

g0 +2Ω
2
s0 +Ω

2
∗e)Ω

4 +[(τe−1/2−23/4τe)Ω
2
s0 +(3/4−ηi)Ω

2
∗e]Ω

2

+[(15/2+9τe/4)Ω2
s0− (η2

i +9ηi/2−17/4)Ω2
s0]Ω

2
s0/τe, (7)

K (Ω) = Ω
9−Ω

8 +

[
2
τe

(
Ω

2
g0−

3
4

)
Ω

2
s0 +(ηi−1)Ω2

∗e

]
Ω

7 +
2
τe

(
Ω

2
g0−

3
4

)
×(

1− 3
2

ηi

)
Ω

2
s0Ω∗eΩ

6− 2
τe

[(
7
2
+

3
τe
− 1

τ2
e

)
Ω

4
s0 +

(
1− 3

2
ηi

)
ηiΩ

2
∗e

]
Ω

2
s0Ω

5, (8)

stands respectively for the fluid part and the kinetic correction due to Landau damping. The

normalised frequencies in (6) – (8) are defined by: Ω = ωR0/vTi , Ωg0 = (7/4+ τe)
1/2, Ω∗e =

ω∗eR0/vTi and Ωs0 = τe/2q2. To find the continuum spectrum, first we develop D(Ω), where

Ω = ΩR + iΓ, in a series about the point Ω = ΩR (oscillatory part) up to first order in Γ� ΩR

(damping part). Then we separate the real and imaginary parts of D(Ω) = 0, which results in

F (ΩR)≈ 0 e Γ =− K (ΩR)
∂F
∂Ω
|Ω=ΩR

√
πq5 exp(−q2

Ω
2
R) (9)

which can be solved iteratively in three asymptotic limits, Ω ∼ Ωg0 (GAM branch), Ω ∼ Ωs0

(sound branch) and Ω ∼ Ω∗e (diamagnetic branch) where Ωg0� Ωs0,Ω∗e and Ωs0� Ω∗e and

Ω∗e�Ωs0 are considered for the sound and diamagnetic classes of solutions respectively. Also

the condition Ωs0� 1/q, which is attained when τe� 1, must be satisfied for the validity of

this model. The three solutions and their respective damping rates are then given by:

Ω
2
G = Ω

2
g0 +(τe +4+23/4τe)(Ω

2
s0/Ω

2
g0)+(τe +1+ηi)(Ω

2
∗e/Ω

2
g0) (10)

ΓG =−
{

Ω
4
g0 +

(
5
2

Ω
4
g0−

9
4

Ω
2
g0 +

29
32

)
1
q2 +ηiΩ

3
g0Ω∗e +

[
(1+ηi)Ω

2
g0 +ηi−

3
4

]
Ω

2
∗e

}
×

q5

2
√

π exp(−q2
Ω

2
G), (11)

Ω
2
S =

(
1+

7
4τ2

e

)
Ω

2
s0 +

[(
3
4
−ηi

)
τe +

5
4
−ηi

(
ηi +

1
2

)]
Ω

2
∗i (12)

ΓS =−

{(
1− 3τe

4
+ τ

2
e

)
1
q2 +

√
2
τe

[
17
8

ηi−
57
8
+

(
3− 5

4
ηi

)
τe +

(
ηi

2
−1
)

τ
2
e

]
Ω∗e

q
−

1
2

[
4+(ηi−1)τe +3ηi

(
ηi−2

)]
qΩ

2
∗e

}
q
4
√

π exp(−q2
Ω

2
S), (13)

In the diamagnetic branch for Ω∗i � 1/q and τe � 1, considering ηi � 3/4 or ηi � 3/4 the

solution can be approximated by

Ω
2
D =

(
3
4
−ηi

)
Ω2
∗e

Ω2
g0

+
4[Ω2

g0η2
i +(Ω4

g0 +Ω2
g0/2−29/16)ηi]− (3Ω4

g0 +5Ω2
g0−87/16)

(4ηi−3)τe

Ω2
s0

Ω2
g0
, (14)
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The instability occurs at a greater value, ηi > 3/4+(τe +11/2+19/4τe)(Ω
2
s0/Ω2

∗e), then that

obtained by [6], in which q is considered to be infinity.

For η ≈ 0, i. e. no temperature gradient, the damping rate in the diamagnetic branch is

ΓD =−
(

Ω
2
g0−

3
4

)
Ω4
∗e

Ω8
g0

[
9

16
Ω

2
∗e−

3
4

(
Ω

4
g0−
√

3Ω
3
g0−

55
24

Ω
2
g0−

87
32

)
1
q2

]√
π

2
exp(−q2

Ω
2
D)(15)

In figure 1 the three branches of the GAM frequency for ηi ≈ 0 are plotted as a function of q.

Figure 1: Characteristic GAM frequen-

cies and its damping rates vs q.

Discussion: We observe that in regions of lower

values of q (close to the centre of the plasma col-

umn) higher ion temperature gradients are neces-

sary to drive the diamagnetic instability. On the

other hand in these regions the damping rate are

higher than for low values of q, according with fig-

ure 1. This effect could be used to explain the diffi-

cult in detecting the GAM frequency near the cen-

tre. Although higher order terms in q−2 are nec-

essary for results closer to experimental data, this

model provides a physical comprehension of the

Landau mechanism and diamagnetic effects on the GAM.
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