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Introduction: Due to their role in suppression of turbulence in tokamaks [1], geodesic acoustic
modes (GAM) [2], also recognized as a high frequency branch of zonal flows (ZF), have been
widely investigated in fluid [3, 2] and kinetic [4, 5] models. The kinetic model predict the GAM
frequency to be of the form: a)gzam = (g0 + smaller order terms)vz; /Ry where Qéo =7/4+ 1,
1, = T, /T;, Ry is the major radius of the tokamak and v% =2T;/m;.

GAM are believed to be part of drift wave (DW) turbulence and for this reason investigation
of diamagnetic effects caused by density and temperature gradients may help to understand
the turbulence suppression mechanism, which is an essential issue in fusion science. In [6]
using a two fluid model it was shown that for ; = d,InT;/d,Inny > 3/4, a non oscillatory
instability takes place and the growth rate of this instability is proportional to 1;®.., where
.. = T,/eBrLy is the electron drift frequency, Lg,l = d,Innyg is the characteristic scale scale
length of the density gradient. Corrections of &(g~2) (g is the safety factor) which was not
included in [6] is computed in this paper up to first order.

It is also important to determine the characteristic time scale for the GAM existence which
can be obtained from the computation of the damping rate. Collisionless damping via Landau
mechanism is a fundamental proccess characterised by the wave-particle interaction was inves-
tigated in [7, 5] considering GAM without diamagnetic effects.

Here we complement the work of [6] by using a gyrokinetic linearised model to investigate
GAM and their related modes in the presence of density and ion temperature gradients (dia-
magnetic effects) taking into account ion Landau damping. Three modes are found and their
respective collisionless damping rate.

The model: We start with the gyrokinetic equation as derived by[8],

J ~ 8FMa 0 bXVFMa . ~
(E"’Vga V)ga —ea.]()(kLVL/wca)( &éaa E—FT%IkL)q) (1)

to find the perturbed distribution function, fi; = eq®dFy, /0Eeq + §aexp (k- p,,), which is

an expansion of the equilibrium energy, &, = v*/2mg (®o = 0 in non rotating systems). The
subscript o labels for ions and electrons of the hydrogen plasma that we consider, ey, Mg

and @., = eB/my > 0 stands respectively for the charge, mass and gyrofrequency, Fy, is the
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Maxwellian equilibrium distribution, Jy(x) is the zero order Bessel function, p, =b x v /@,
is the vectorial gyroradius and k | ~ &k, 4 &gk is the perpendicular wave vector. We consider
perturbations with intermediate wave length, r ! < k, < pl-*l. The following methodology is
then applied: First, by solving the gyrokinetic equation we obtain the perturbed distribution
function as fo = fo(®(r),0), where ® is the perturbed electrostatic potential. Then integra-
tion of fy in velocity space, {...) = Oznd}/fow dvyvy [7.dv(...) must be performed to find the
density, 7iq. In this part it is useful to use the relation exp (k| - p,) = Jo(k v /@y,) [8] where
ﬁ denotes the average over the gyro-angle, y. Since GAM are low frequency modes, by de-
termining /i, we can apply the quasi-neutrality condition, e(i; — 7i,) ~ 0, to obtain the desired
frequency in the continuum.

In the equilibrium the guiding center velocity is governed by the parallel motion and the

vertical drift due to the gradient and curvature of the magnetic field (B), i. e.,

2
Vga = va+ X (%VIHB—F V|2K') , (2)

wcaRO
where b =B/B and k = b - Vb. For a high aspect ratio tokamak (r < Ry) the calculation of v,
in (2) is simplified and from the substitution of (2) in (1) we obtain a tractable equation,

vy o (02 Y ol cafity (| _ Oua ;
1— -+ 5 —|—T sin 0 ga :J()(ba) 1-— VlnFMa q)7 (3)
(0] o \2vy, vy, Ty o

where IA<H = (do+499y)/qRo, ®ae = v1K,P;/Ro, bo =KV | [ O, Wroo =To/eqBrLy and VIn Fy, =
14 na(vi/v%a + vﬁ/v%a —3/2)]/Ly. To solve (3) we consider only the poloidal m = 0,41 and
toroidal 7 = 0 harmonics in go = }.,,, , % (r) exp [i(m6 — n¢ — wt)].
The quasi-neutrality condition can then be organized as follows:
Koo Fos Hoc Dy
( 1 sin® cos0 ) By Rss Lo ®, | =0. 4)
Koo Kes Kee d.

€2n0

T;

where Z,;, (a,b = 0,s,c) represent long expressions scaling to
%00 ~ k%p127 f%so ~ f@Os ~ '%06‘ ~ () ™ krP,', '%ss ~ %cc ~ r%sc ~ e@cs ~ 1. (5)

These terms are dependent of the plasma dispersion function, Z(x) = ~'/2 [*_dyexp (—y?)/(y—
x), coming from the integration of the parallel velocity. Further analytical computation is possi-
ble in the limit |x| > 1, in which, according with [9], Z(x) ~ 2iy/Texp (—x?) — (1 /x+1/2x> +
3/4x° 4 15/8x" + 0(1/x%)) if we consider Im(x) < 0. The dispersion relation can be conve-

niently written as

2(Q) = F (Q)+ . (QiVEg exp(—°Q7) (6)
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where
F(Q)~ Qb — (Q2O+2Q +Q2)Q% + (1, — 1/2—-23/41,)Q2%, + (3/4 — ;) Q2,)Q°
+[(15/24 97, /4)Q% — (N7 +9m:/2 — 17/4)Q5] Q% / e, )

4

3 2(/7 3 1 3
(1 - 5’7:‘) Q9. Q° — - [(5 o 2 )Qso + (1 - 5’7:‘) niﬂie] Q2,0 (8)

stands respectively for the fluid part and the kinetic correction due to Landau damping. The

2 3 2 3
‘%/(Q‘) :'Q9_QS+ |:T_ (Qéo 4>Qs0+(nl )‘Qie:| Q7+T_(Q§O__> X
e e

normalised frequencies in (6) — (8) are defined by: Q = @Ry /vr;, Qo0 = (7/4+ Te)l/z, Qo =
@sRo /vy, and Qg = 7,/2¢*. To find the continuum spectrum, first we develop Z(Q), where
Q = Qr+il, in a series about the point Q = Qg (oscillatory part) up to first order in I' < Qp
(damping part). Then we separate the real and imaginary parts of Z(Q) = 0, which results in

L) i exp (—03) ©)

ﬁ(QR)%O e I'=-—
|Q Qr

which can be solved iteratively in three asymptotic limits,  ~ €, (GAM branch), Q ~ Q
(sound branch) and Q ~ Q.. (diamagnetic branch) where Qg0 > Q9, Q4. and £y > Q,, and
Q.. > Qg are considered for the sound and diamagnetic classes of solutions respectively. Also
the condition Qg9 > 1/¢, which is attained when 7, > 1, must be satisfied for the validity of

this model. The three solutions and their respective damping rates are then given by:

QF = Q2 + (T +4+23/47.) (3 / Q) + (T + 1+ 1) (2, /Q0) (10)

5 9 29\ 1 3
I = {Q4O+(2Q 4QZO+32) +niQ oQ*e+[(1+ni) 20+ Mi— ]Qz}

< rex (PR3, (1)

7 3 5 1
Q2 <1+4 )QS0+KZ—n,)Te+— m(m )}Qz (12)
31, 1 2717 57 5 n; Q..
Ts=— 1=+ |5+ /= | oni— o = Mi )T+ | 5 —1 -
> {( 4 +Te>q2+ Te|:8n 8+(3 4n>r+<2 ) } q

; {44’(77 _1>Te+3rh (771 >:|que}%\/EeXp(_q2Q§)7 (13)

In the diamagnetic branch for Q,; > 1/q and 7, > 1, considering 1; < 3/4 or 1; > 3/4 the

solution can be approximated by

o (3 ) Q2 +4[Qg0n, +(Qf) +9Q3)/2—-29/16)] — (303, +5Q3, — 87/16) Q2

=5 , (14
P \4 Q% (40 —3)T Q%
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The instability occurs at a greater value, 1; > 3/4 + (1, + 11/2+19/47,)(Q2,/Q2,), then that
obtained by [6], in which ¢ is considered to be infinity.
For n =~ 0, i. e. no temperature gradient, the damping rate in the diamagnetic branch is

3\Q2 19 3 55 87\ 1 1=

. 2 * 2 4 3 2 | X 202

FD__(ggO_Z) 8; [Eg*e_Z(QgO_\/gQgO_%‘_QgO_32)612} 5~ exp(—¢"Qp)(15)
g

In figure 1 the three branches of the GAM frequency for 1; ~ 0 are plotted as a function of q.

Discussion: We observe that in regions of lower
values of g (close to the centre of the plasma col-
umn) higher ion temperature gradients are neces-
sary to drive the diamagnetic instability. On the
other hand in these regions the damping rate are

higher than for low values of ¢, according with fig-

ure 1. This effect could be used to explain the diffi-

cult in detecting the GAM frequency near the cen-

tre. Although higher order terms in ¢~2 are nec- Figure 1: Characteristic GAM frequen-

essary for results closer to experimental data, this cjes and its damping rates vs g.
model provides a physical comprehension of the
Landau mechanism and diamagnetic effects on the GAM.
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