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One of the novel and most prominent results in the theory of geodesic acoustic modes (GAMs)

discovered in numerical simulations is the existence of a global GAM (GGAM) [1]. Such mode

can appear as a discrete eigenmode in the gap of the continuous spectrum and has finite spacial

width. The importance of global mode study is associated with the fact that these particular

modes (in contrary to the modes of the continuous spectrum) are thought to "survive™ and to
be observed under the real conditions in dissipative medium. Moreover, the independence of
the frequency of GAM on plasma radius observed in some recent experiments — see, €. g.,
Refs. [2, 3] — serves as a direct evidence of the global structure of geodesic acoustic mode.
In Ref. [1] GGAMSs have been found only for negative shear discharges when local GAM fre-
quency, 0\ = ©2(2+ 1/¢%), has a maximum inside the plasma (here @j is the frequency of
sound, ¢ is the safety factor).

In this paper we derive analytically the condition of the appearance of global GAM and

present the indicative example of the GGAM for a tokamak with positive magnetic shear profile.

We use the standard reduced one-fluid MHD model in the electrostatic approximation:
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where the usual notations are used; subscript “0” denotes the equilibrium quantities. Looking

for axisymmetric solutions and excluding A}, j and v, we arrive to the following set of coupled

equations for the poloidal Fourier harmonics of the potential and plasma pressure:
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Here ca = B,/+/4mpo, where B, = By,—o; ¢s = (Ypo/ po)'/2; m is the poloidal wavenumber.
Low-pressure plasma equilibrium in a large aspect ratio tokamak with circular magnetic sur-
faces is assumed (r — radius of the magnetic surface counted from the magnetic axis). Keep-

ing in Egs. (1) — (2) the zeroth harmonic of potential, ¢y, and the first harmonics of pres-

sure, p+1, we easily obtain the ordinary GAM spectrum. To obtain a global solution we add

into consideration the second harmonics of electrostatic potential, ¢1>. Note that the first har-
monics of the pressure enter in Eq. (1) solely in the combination (p; — p_;) determined by
the ¢o: p1 — p—1 = Repo@(do/dr)/B,. Introducing normalized radius # = r/a and frequency

@ = w’R?/c? we arrive to the system of two equations for ¢ and &, = 72(¢ + ¢_»):
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Here T'(7) is a normalized temperature equal to the unity at # = 0, and 8 = ¢? /clzwzo; Po is

assumed to be constant for a simplicity. The second term in the square brackets in Eq. (4) is

negligible with respect to the first one and, therefore, may be omitted. Below we also omit hats
on 7 and ® operating with normalized radius and normalized frequency only.

Eq. (4) can be integrated in an elementary way under condition 3gdq/dr — rqd*q/dr? +
2r(dq/dr)? = 0, which uniquely determines the radial profile of safety factor: ¢ = goq1/(q1 —
(g1 — qo)r4). Here qo = g|,—¢ and g1 = g|,—;. In what follows we work with such a choice
of g-profile only. If g1 > qo, this profile describes monotonic growth of ¢ with small gradient
near the axis. After integration of Eq. (4), we obtain the following expressions for d¢@y/dr and

d<1>2/dr:
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where K is the constant of integration defining the amplitude of the considered modes.
The existence of a global mode is determined by two conditions. First, the continuously

differentiable solution can be found if there is no singularities in the right-hand sides of Eqgs. (5)
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— (6). In our case, this condition reduces to the positivity of denominator, w*(1+ BTq*/4) —

T(2+ 1/¢%) > 0, that should be satisfied at every point in plasma. Second, the global mode

solution has to obey the boundary conditions. We impose zeroth boundary conditions for ®;:
D,—0 =0, ®y,—; =0, which can be summarized in the single integral requirement for the

existence of global GAM:
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It can be easily understood that Eq. (7) determines the eigenfrequency of the GGAM.

To perform the integration in Eq (7), we consider the representative class of temperature

profiles in the form T = ¢? /(Ao + A2g” + Asq™). For these profiles, condition (7) reduces to the

simple combination of two integrals:
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where b = (A —2/®?) /(A4 + B/4), ¢ = (Ag — 1/@?)/(A4 + B/4). The expressions of the

incoming integrals in elementary functions are determined by the sign of the parameter 0 =

b? — 4c, therefore, there are two forms of the dispersion relation for GGAMs:
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For brevity, we use designations: by = (b£V/8)/2, cx = \/2\/c£b.
Eq. (9) with 6 < 0 corresponds to the regimes with a maximum of the local GAM frequency,
Wcapm, Within the plasma column. In the considered case of monotonically growing g with

radius, this maximum can be provided by the temperature profile with a non-axis maximum
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(e. g., as a result of a powerful non-axis auxillary plasma heating). The radial structure of the

mode is similar to the structure of the solution derived numerically in Ref. [1] for the discharges

with the reverse magnetic shear.

Eq. (10) with 6 > 0 takes place for monotonically decreasing temperature. Note that b_ is
always negative, therefore, there is always a logarithmic branch in /(b ). The eigenfrequency
satisfying Eq. (10) provides the argument of the logarithm be close to zero that needs very pre-
cise fit of the frequency. That is why this solution is difficult to be found by direct numerical
calculations. Formally, such solution always exists, but in practise it takes place only for tem-
perature profiles with rather flat region in the plasma core and if the range of ¢ variation in the
plasma is relatively small. On Fig. 1a, we present the example of the solution obtained in the

case 0 > 0 for T- and g-profiles shown on Fig. 1b; B = 0.04. Thus, we demonstrate analytically

the possibility for GGAM formations in the discharges with monotonic profiles of the Tocal

GAM frequency.
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Figure 1: (a) — radial profiles of d¢y/dr (solid line) and ®; (dashed line); (b) — radial profiles

of the temperature (solid line) and of the safety factor (dashed line). Here w? =2.39.
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