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Helical states are a common feature of the Reversed Field Pinch (RFP) configurations. These
states are spontaneously observed in all experiments and can be described as equilibria
characterized by a well defined periodicity that is linked to the machine aspect ratio and
generally corresponds to the innermost resonant mode of an axisymmetric equilibrium. The
spectrum of MHD fluctuations as measured at plasma edge is peaked on the main helicity with
a quasi single helicity feature.

In the RFX-mod experiment [1] these states are routinely found [2] and show a helical core with
a periodicity m=1,n=7 that is observed in all diagnostics both magnetic and kinetic (e.g. plasma
temperature and density, SXR emissivity, plasma potential at the edge). However they do show
back-transitions to multiple helicity states which can be only partially compensated by properly
tuning the feedback laws of the real-time MHD mode active control system [3].

Previous linear-ideal MHD analyses have been performed with the Terpsichore code [4]
running on 3D equilibria computed with the VMEC code [5] assuming internal profiles, such as
pressure and safety factor, based on typical experimental profiles. These analyses showed that
ideal MHD kink modes can be unstable leading to the breaking of the symmetry of the
configuration, with a strong sensitivity to the internal profiles, indicating that more precise
matching of equilibria with experimental data is mandatory. To this end we now use the V3FIT
code [6] to calculate more precisely plasma equilibria from diagnostic information available on
RFX-mod [7]. This is an important aspect in order to assess the role of current density and
pressure gradients with respect to the level of ideal stability of MHD modes.

It is known that Terpsichore has some issues in dealing with the reversal surface, i.e. the surface
where the toroidal magnetic field goes to zero and then reverses sign at the edge with respect to
plasma core. However as helical states are favored by a very shallow reversal [2], we run the
code artificially removing the reversal at the very edge. Though this has a very limited effect on
the final equilibrium (e.g. flux surfaces shape and internal profiles), the effect on stability might
be more significant.

Taking into account, as a first step, the axi-symmetric case, one finds the usual m/n=1/6

unstable mode that is a resistive wall mode easily controlled with the active control system for
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Figure 1: Left: q profile as a function of the normalized radial flux coordinate. Horizontal lines show the
most unstable m/n modes for this case. Right: contour plot of plasma pressure, showing also flux surfaces.
Quantities are shown in Boozer coordinates.

instabilities present on RFX-mod [8]. In the analysis of this paper, we assume that rge/a=1.067
(a=0.459 m is the minor radius of the first wall) as we considered as shell the vacuum vessel.
This is the radius at which generally measurements are extrapolated for the realtime control of
instabilities.

The next step is the study of fully 3D configurations and in particular the determination of
symmetry breaking modes, i.e. unstable modes with a periodicity close to the dominant one.
In Terpsichore unstable modes are determined solving the eigenvalue problem for the energy of
the system decomposed in terms of internal potential energy (Wp), vacuum energy (Wy) and
kinetic energy (Wk): 0Wp + Wy + A-0Wk = 0, where the eigenvalue A < 0 indicates instability.

The eigenfunction associated to each mode is calculated by considering the MHD fluid
displacement ¢ = \/Ef S(Vo x Vo) + B;—an + [%n—u] B calculated according to Boozer

coordinate (& is the toroidal flux and the ” denotes derivative with respect to the radial flux

coordinate). In particular we are interested in the 0.06T
radial component 5 = & - Vs. 0.04f 2/15 1
For an experimental helical state, in figure 1 we ¢ 0.02:

show the q profile and plasma pressure contours
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Figure 2: Eigenfunctions of the displacement
associated to the two most unstable modes.

In figure 2 we show the eigenfunctions of the two  Vertical lines correspond to the maximum of g
(red) and the resonance of the 1/8 mode (blue).

1/8 (resonant).

most unstable modes (the most unstable mode has

an eigenvalue A =—0.0326 to be compared to the value A=—1x10" representing marginal
stability [4]). The colours are the same as in figure 1 and vertical lines correspond to the radius
of the 1/8 resonance (blue) and the maximum of q (red). Already from this plot one can see how

the eigenfunctions are larger near resonances (if present) and in regions where magnetic shear is
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Figure 3: Contour plots of Wy, (left) and Wyg; (right). Flux surfaces are also shown. Coloured lines
correspond to the maximum of q (red) and the resonance of the 1/8 mode (blue). Notice that Wy is
significantly smaller than Wy, which is the destabilizing term.

lower (remember that the helicity of these modes is in some sense “close” to the main helicity of
the configuration).

In studying stability it is also useful to determine which is the driving term for the unstable
modes especially in cases where large gradients are also observed. Indeed helical states in
RFX-mod do show a significant plasma pressure gradient in the region close to the maximum of
q (associated to a transport barrier [2]) and this might also lead to pressure driven instabilites
along with the ususal current driven modes of the RFP. In Terpischore the driving terms
considered are essentially two: Wy, describing the kink mode instability linked to the interaction
of parallel current density with magnetic shear; and Wgy describing the ballooning-interchange
instability due to the interaction of pressure with the magnetic field line curvature.

In figure 3 we show the contour plots of the two potential energies Wy, and Wg; along with
constant flux surfaces describing the equilibrium (in Boozer coordinates). Again coloured lines
correspond to the resonance surface of the 1/8 (blue) and to the maximum q (red). Wg; is
signficantly smaller that Wy, so that these modes are always current driven kink instabilities.
Also the destabilizing potential energy is concentrated in the helical core (inside the resonance
of the 1/8) where 3D effects are more significant and magnetic shear is lower.

To address the effect of the q profile in the core, we have done a parametric study varying the q
profile in order to obtain different values for magnetic shear in the core and removing
resonances or allowing for double resonances. The equilibria obtained, have been studied with
Terpsichore to assess the stability level of the configuration. As no role of pressure has been
observed so far, the pressure profile has been kept constant in the scan.

As a first consideration, the changes in the q profile do not affect significantly the final
equilibria: the shape of flux surfaces as well as internal profiles are not qualitatively different

from each other. However in terms of stability, the differences are not negligible.
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Figure 4: q profiles and corresponding eigenvalues A. mode is the 1/8. The most unstable

The most unstable mode is the 1/8 for all these cases. condition appears to be the flat q profile

without the resonance radius (green profile). Increasing magnetic shear some level of
stabilization is obtained (blue profile). Nonetheless an almost flat profile but with the
resonance, provides a better stabilization (black profile). This comes from the fact that the
resonance now appears in a region where some shear is present. The least unstable condition
(from the linear-ideal point of view) is obtained with a reversed shear in the core associated to
the presence of a double resonance for the 1/8 mode: again in this region some level of shear is
present at the resonances. Notice that increasing the maximum value of q would simply change
the most unstable mode (e.g. the mode 2/15), but the general features would still remain
unchanged, an indication that the critical condition seems to involve the mode that is marginally
resonant. It is not part of this work, but in this respect one should also consider the role of
resistivity in defining the spectrum of unstable tearing modes (both current and pressure driven)
as shown in [9].

The results presented show that from the linear-ideal point of view of stability, helical states are
sensitive to the level of magnetic shear and marginal resonances in the core. As the helical state
develops, one is expecting a larger fraction of current to flow in the hotter helical core and this
will change the q profile accordingly. Also, as we are dealing with global modes, it is to be
addressed the issue of resonant m=0 modes (hard to manage in Terpsichore) and their
interaction with m=1 mode, as in the actual experiment these modes are marginally resonant
(the discharges have a very shallow reversal).
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expressed herein do not necessarily reflect those of the European Commiission.
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