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Abstract
An iterative procedure for the solution of the helical Grad-Shafranov equation is introduced,
and the application of the algorithm to the quasi-helical states of the RFX-mod experiment is

presented and discussed.

Introduction

Grad-Shafranov’s equation is a two-dimensional differential equation useful to describe MHD
equilibria and often exploited in conjunction with external magnetic measurements in order to
model internal profiles. It can be derived for a symmetric configuration, that could be either an
axisymmetric toroidal system or, as in this paper, a helical-symmetric cylindrical system. Since
helical states are naturally and routinely found in RFP dynamics as a meaningful example of its
dynamo-like self-organizing nature [!], the exploitation of the helical Grad-Shafranov’s equa-
tion in the modelling of the equilibrium is a natural way of linking a fully three-dimensional

configuration with a two-dimensional equation [2].

Helical states of the RFX-mod experiment

Generally speaking, the RFP configuration is characterized by the concurrent presence and
interplay of a wide range of MHD modes, in both the poloidal mode number m and the toroidal
mode number 7 and thus the ‘helicity’ m/n. Such a configuration, dubbed ‘Multiple Helicity’
(MH), has poor confinement properties and exhibits enhanced transport due to magnetic chaos.

In recent years [1] a new kind of paradigm for the RFP has emerged, following both the-
oretical analyses and experimental studies: it has been dubbed ‘Quasi Single Helicity’ (QSH)
configuration, and is characterized by a MHD perturbation spectrum where a single helicity
mode, together with its higher order harmonics, can be found to be much higher in amplitude
than the other modes. In a QSH state magnetic chaos is found to be reduced leading therefore
to better confinement properties and reduced transport.

Finally, one can easily think of a fully ‘Single Helicity’ (SH) configuration where there is a
dominant mode (with its higher order harmonics) but there are no secondary modes at all. In a
SH state the configuration is symmetric with respect to the helicity of the dominant mode. This

is the configuration that will be discussed throughout the paper.
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Helical Grad-Shafranov’s equation

Following [2], let us start from a cylindrical coordinate system (r,¥,z), where the linear
coordinate z describing the direction along the cylinder (that is, along the linearized torus) has
period 2R\ (Ry is the major radius) and can thus be replaced by an angle-like coordinate ¢.

The helical symmetry assumption is that in the MHD spectrum there is a single dominant m, n
mode together with its higher order harmonics. It is straightforward to notice that the physical
angular dependence is upon a ‘helical angle’ u = m®¥ — n¢, not upon the two angle coordinates
separately, and thus each quantity is completely determined by its (r,u) dependence and can

therefore be decomposed as a Fourier series in terms of a single ‘helical mode number’ ¢:
B(r,u) =B(r)+)_ b?(r)e", (1)
q

In RFX-mod the most internally resonant mode, the m = 1,n = 7 tearing, is the dominant mode
g = 1 that determines the helicity of the SH state, while its higher order harmonics correspond
to higher ¢ numbers (e.g.: ¢ =2 means m = 2,n = 14, etc). Harmonics higher than ¢ = 2 have
been proved to be negligible in the expansion in eq. (1) and have thus been neglected.

Since pressure effects are small in present RFPs, they have been neglected. The resulting

force-free equation has to be solved together with Ampere’s Law:
jxB=0, VxB=j. 2)
In terms of the ‘helical flux’ } and the ‘helical field’ g,
X =mAy +neAy, g =mBy +n€By, 3)
the magnetic field has the representation:

B(ru) = f(r)Vx(ru) xo(r)+ f(r)g(ru)o(r), )

where €(r) = r/Rq, f(r) = r/(m* +n’€?), o(r) = # x Vu. The Grad-Shafranov’s equation de-

rives from (2) and can be shown to take the helical form:

19 [ dx 10%y dg
For () =P e (s ®

with B = 2mn/Ry(m? + n’>€?). The helical field is proven to be a flux function, g = g(x).
The eigenfunction y (r,u) can be decomposed similarly to eq. (1), so that each Fourier har-
monic ¥ can be solved through a separate differential equation:
1d [ dxt | (@), o, (,dg)*

Once the helical flux is known, the magnetic field can be promptly computed through eq. (4).
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Algorithm

In order to solve the HGS equation an iterative approach has been adopted: by separating
the LHS from the RHS, one can solve eq. (6) as one ordinary differential equation for each
harmonic )4, and eventually reach convergence and self-consistency. A Fortran code has been
developed with this purpose.

As initialization, the g = 0 field is solved using a force-free o-®¢ model [3]. Since pressure
is neglected, the F' and ® constraints are not exactly matched. Then, the ¢ = 1 eigenfunction
is computed solving a cylindrical Newcomb equation [4], that can be interpreted as the linear
approximation of eq. (5) in a perturbative approach. For the dominant harmonic, m =1, n =7,
two magnetic measurements are available in RFX-mod: the radial and toroidal components of
the perturbed field on the inner side of the conductive shell, bij and b;)ﬂ. They are both used to
impose the boundary conditions (BCs) in order to get a meaningful eigenfunction. The higher
order harmonic g = 2 is neglected in the ‘zeroth’ iteration.

Then, the actual iterative procedure starts: first, flux surface averages (-), are computed [5]
in order to get a helical field as a flux function, g(x) = (g(r,u))y = (mBy +neBy); next, the
helical field is expressed again in terms of (r,u), as g(r,u) = g(x(r,u)); after that, the RHS
of eq. (5) is computed by Fourier transform of the g and gdg/dy terms; finally, the actual
integration is carried out and new eigenfunctions ¢ are computed. For ¢ = O there is one BC,
which has to be exploited to impose regularity constraints on the origin, while for g = 1,2 there
are two: one is used for regularity and the other to match external measurements (b?:1 = bij,

=2 . . .
bf~" = 0). The procedure stops as soon as a few user-determined convergence criteria are met.

Convergence
A satisfying self-consistent solution has proven to be rather difficult to find. First of all, a
back-averaging method had to be implemented in the code in order to successfully smooth the

sharply varying features of the successive iterations, following the formula:

Xir1y =1 =K) 26 + K 2(i-1), (7

where ;) is the ith iteration solution and K ~ 80%. This method slows down the iterative
dynamics, since just 1 — K ~ 20% of new information is considered in each step, but at the
same time favours convergence in the overall scheme [6].

A second aspect of convergence to be tackled with particular care is the problem of the BCs.
When solving for the ¢ = 1 harmonic of the HGS eq. there is just one BC, b, = b}’7, to be
imposed and therefore the solution xgd:el does not exactly satisfy the second one, by = b;)i. By

introducing an auxiliary solution, xgule, that satisfies the ‘ideal shell’ (b, = 0) condition, one
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can promptly show that by combining both solutions:

qul = ng:el + Caux Xﬁ’;l ) ()

the resulting 9~ automatically satisfies the BC for b,, and that the additional BC for by can

be enforced by appropriately choosing the Cyyx coefficient.

Results
A simulation typically reaches convergence within a few tens of iterations. Fig. (1) shows that
the auxiliary coefficient is found to be Cyyx ~ 4%, while the 0 (i,i — 1) variable, measuring the
quadratic difference between two successive iterations, amounts to 6 ~ 0.2% upon convergence.
Fig. (1) also shows the final computed solution for b?:] together with the starting guess, that
is, Newcomb’s solution (the discontinuity in its first derivative is due to a singular term at the

resonant radius in Newcomb’s eq. [4] that is eventually smoothed away by the HGS eq.).
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Figure 1: Typical iterating sequence and computed eigenfunction for an m = 1, n = 7 simulation.

The computed 9= solution satisfies both BCs and is currently being benchmarked against

the Variational Moments Equilibrium Code (VMEC) [7] with encouraging results.
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