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Abstract

An iterative procedure for the solution of the helical Grad-Shafranov equation is introduced,

and the application of the algorithm to the quasi-helical states of the RFX-mod experiment is

presented and discussed.

Introduction

Grad-Shafranov’s equation is a two-dimensional differential equation useful to describe MHD

equilibria and often exploited in conjunction with external magnetic measurements in order to

model internal profiles. It can be derived for a symmetric configuration, that could be either an

axisymmetric toroidal system or, as in this paper, a helical-symmetric cylindrical system. Since

helical states are naturally and routinely found in RFP dynamics as a meaningful example of its

dynamo-like self-organizing nature [1], the exploitation of the helical Grad-Shafranov’s equa-

tion in the modelling of the equilibrium is a natural way of linking a fully three-dimensional

configuration with a two-dimensional equation [2].

Helical states of the RFX-mod experiment

Generally speaking, the RFP configuration is characterized by the concurrent presence and

interplay of a wide range of MHD modes, in both the poloidal mode number m and the toroidal

mode number n and thus the ‘helicity’ m/n. Such a configuration, dubbed ‘Multiple Helicity’

(MH), has poor confinement properties and exhibits enhanced transport due to magnetic chaos.

In recent years [1] a new kind of paradigm for the RFP has emerged, following both the-

oretical analyses and experimental studies: it has been dubbed ‘Quasi Single Helicity’ (QSH)

configuration, and is characterized by a MHD perturbation spectrum where a single helicity

mode, together with its higher order harmonics, can be found to be much higher in amplitude

than the other modes. In a QSH state magnetic chaos is found to be reduced leading therefore

to better confinement properties and reduced transport.

Finally, one can easily think of a fully ‘Single Helicity’ (SH) configuration where there is a

dominant mode (with its higher order harmonics) but there are no secondary modes at all. In a

SH state the configuration is symmetric with respect to the helicity of the dominant mode. This

is the configuration that will be discussed throughout the paper.
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Helical Grad-Shafranov’s equation

Following [2], let us start from a cylindrical coordinate system (r,ϑ ,z), where the linear

coordinate z describing the direction along the cylinder (that is, along the linearized torus) has

period 2πR0 (R0 is the major radius) and can thus be replaced by an angle-like coordinate φ .

The helical symmetry assumption is that in the MHD spectrum there is a single dominant m,n

mode together with its higher order harmonics. It is straightforward to notice that the physical

angular dependence is upon a ‘helical angle’ u ≡ mϑ −nφ , not upon the two angle coordinates

separately, and thus each quantity is completely determined by its (r,u) dependence and can

therefore be decomposed as a Fourier series in terms of a single ‘helical mode number’ q:

B(r,u) = B0(r)+∑
q

bq(r)eiqu. (1)

In RFX-mod the most internally resonant mode, the m = 1,n = 7 tearing, is the dominant mode

q = 1 that determines the helicity of the SH state, while its higher order harmonics correspond

to higher q numbers (e.g.: q = 2 means m = 2,n = 14, etc). Harmonics higher than q = 2 have

been proved to be negligible in the expansion in eq. (1) and have thus been neglected.

Since pressure effects are small in present RFPs, they have been neglected. The resulting

force-free equation has to be solved together with Ampère’s Law:

j×B = 0, ∇×B = j. (2)

In terms of the ‘helical flux’ χ and the ‘helical field’ g,

χ = mAφ +nεAϑ , g = mBφ +nεBϑ , (3)

the magnetic field has the representation:

B(r,u) = f (r)∇χ(r,u)×σ(r)+ f (r)g(r,u)σ(r), (4)

where ε(r) = r/R0, f (r) = r/(m2 +n2ε2), σ(r) = r̂×∇u. The Grad-Shafranov’s equation de-

rives from (2) and can be shown to take the helical form:

1
f

∂
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f
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)
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1
r f
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∂u2 = βg(χ)−g
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dχ

, (HGS) (5)

with β = 2mn/R0(m2 +n2ε2). The helical field is proven to be a flux function, g = g(χ).

The eigenfunction χ(r,u) can be decomposed similarly to eq. (1), so that each Fourier har-

monic χq can be solved through a separate differential equation:
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(

g
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)q

, q = 0,1,2. (6)

Once the helical flux is known, the magnetic field can be promptly computed through eq. (4).
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Algorithm

In order to solve the HGS equation an iterative approach has been adopted: by separating

the LHS from the RHS, one can solve eq. (6) as one ordinary differential equation for each

harmonic χq, and eventually reach convergence and self-consistency. A Fortran code has been

developed with this purpose.

As initialization, the q = 0 field is solved using a force-free α-Θ0 model [3]. Since pressure

is neglected, the F and Θ constraints are not exactly matched. Then, the q = 1 eigenfunction

is computed solving a cylindrical Newcomb equation [4], that can be interpreted as the linear

approximation of eq. (5) in a perturbative approach. For the dominant harmonic, m = 1, n = 7,

two magnetic measurements are available in RFX-mod: the radial and toroidal components of

the perturbed field on the inner side of the conductive shell, b1,7
r and b1,7

φ
. They are both used to

impose the boundary conditions (BCs) in order to get a meaningful eigenfunction. The higher

order harmonic q = 2 is neglected in the ‘zeroth’ iteration.

Then, the actual iterative procedure starts: first, flux surface averages 〈·〉χ are computed [5]

in order to get a helical field as a flux function, g(χ) = 〈g(r,u)〉χ = 〈mBφ + nεBϑ 〉χ ; next, the

helical field is expressed again in terms of (r,u), as g(r,u) = g(χ(r,u)); after that, the RHS

of eq. (5) is computed by Fourier transform of the g and gdg/dχ terms; finally, the actual

integration is carried out and new eigenfunctions χq are computed. For q = 0 there is one BC,

which has to be exploited to impose regularity constraints on the origin, while for q = 1,2 there

are two: one is used for regularity and the other to match external measurements (bq=1
r = b1,7

r ,

bq=2
r = 0). The procedure stops as soon as a few user-determined convergence criteria are met.

Convergence

A satisfying self-consistent solution has proven to be rather difficult to find. First of all, a

back-averaging method had to be implemented in the code in order to successfully smooth the

sharply varying features of the successive iterations, following the formula:

χ(i+1) = (1−K)χ(i) +K χ(i−1), (7)

where χ(i) is the ith iteration solution and K ≈ 80%. This method slows down the iterative

dynamics, since just 1−K ≈ 20% of new information is considered in each step, but at the

same time favours convergence in the overall scheme [6].

A second aspect of convergence to be tackled with particular care is the problem of the BCs.

When solving for the q = 1 harmonic of the HGS eq. there is just one BC, br = b1,7
r , to be

imposed and therefore the solution χ
q=1
ode does not exactly satisfy the second one, bφ = b1,7

φ
. By

introducing an auxiliary solution, χ
q=1
aux , that satisfies the ‘ideal shell’ (br = 0) condition, one
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can promptly show that by combining both solutions:

χ
q=1 = χ

q=1
ode +Caux χ

q=1
aux , (8)

the resulting χq=1 automatically satisfies the BC for br, and that the additional BC for bφ can

be enforced by appropriately choosing the Caux coefficient.

Results

A simulation typically reaches convergence within a few tens of iterations. Fig. (1) shows that

the auxiliary coefficient is found to be Caux ≈ 4%, while the δ (i, i−1) variable, measuring the

quadratic difference between two successive iterations, amounts to δ ≈ 0.2% upon convergence.

Fig. (1) also shows the final computed solution for bq=1
r together with the starting guess, that

is, Newcomb’s solution (the discontinuity in its first derivative is due to a singular term at the

resonant radius in Newcomb’s eq. [4] that is eventually smoothed away by the HGS eq.).

Figure 1: Typical iterating sequence and computed eigenfunction for an m = 1, n = 7 simulation.

The computed χq=1 solution satisfies both BCs and is currently being benchmarked against

the Variational Moments Equilibrium Code (VMEC) [7] with encouraging results.
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