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Introduction

Physics of resonant magnetic perturbation (RMP), which is due to error fields and/or ad-

ditional current coils, is of great interest to magnetic confinement fusion, because it might be

applicable to a control method of magnetohydrodynamic (MHD) instability and turbulent trans-

port. In tokamaks, it is well-known that screening effect of plasma flows plays a key role in sup-

pression of RMP-driven magnetic islands, and excitation of magnetic islands is accompanied

by slowing down of plasma flows and locking of mode rotation.

In helical systems, such as the Large Helical Device (LHD), sudden disappearance (self-

healing) and appearance (penetration) of RMP-driven magnetic islands have been observed[1,

2]. These phenomena could be understood by the mode-locking theory, where the screen-

ing effect of neoclassical viscosity-driven plasma flows in helical systems plays an essential

role[3, 4]. However, relationship between the mode-locking theory and the conventional theory

of curvature-driven magnetic islands in helical systems has not been fully discussed. Recently,

the mode-locking theory is revisited so as to take into account effect of averaged curvature in

helical systems[5, 6]. In this study, the theoretical prediction is qualitatively compared with

experimental observations in the LHD.

Simulation model

A model of RMP-driven magnetic islands in rotating helical plasmas is systematically derived

in Ref.[5]. In the following, we outline the model.

Consider a helical plasma with an averaged minor radius a and a major radius R0. Fluid

equations are readily averaged in the toroidal direction. The toroidally-averaged equations are

described in torus coordinates (r,θ ,φ), where r is the averaged radial position, θ is the poloidal

angle, and φ is the toroidal angle. Perturbation is dominated by a single mode with a poloidal

mode number m and a toroidal mode number n, which is resonant at a rational surface ι = n/m

located at r = rs, where ι is the rotational transform normalized by 2π , and rs is the averaged

radial position of the rational surface. Near the rational surface, a boundary layer is formed,

where an outer layer is described by ideal MHD and an inner layer is described by resistive

MHD.
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Without loss of generality, outer-layer poloidal magnetic flux perturbation is separated as

ψm(r)cosΘ + ψc(r)cos(Θ−∆Θ), where Θ = mθ − nφ is the phase in rest frames of rotating

magnetic islands and ∆Θ is the phase difference between magnetic islands and vacuum magnetic

islands by the RMP. Ideal MHD equations in currentless helical plasmas yield (misprints in

Ref.[5] are corrected)
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where k∥ is the parallel wave number, κh(r) is the toroidally-averaged curvature, kθ = m/r,

p′0(r) is the total pressure gradient, and B0 is the toroidal magnetic field. Boundary conditions

are: ψm(0) = ψc(0) = 0, ψm(rs ±w/2) = ψs, ψc(rs ±w/2) = 0, ψm(a) = 0, and ψc(a) = ψa.

Magnetic island width and vacuum island width are given by w = 4
√

Lsψs/B0 and wv =

4
√

(rs/a)mLsψs/B0, respectively, where Ls is the magnetic shear length at the rational surface.

Tearing mode stability parameter is separated into two components:
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where x = r− rs. In the limit of κh = 0, we obtain ∆′
mode = ∆′

0 and ∆′
coil = −∆′

0(w
2
v/w2), where

∆′
0 = −2kθs/(1− r2m

s /a2m) and kθs = m/rs. A finite value of κh modifies those quantities.

An asymptotic matching of the outer-layer current and the inner-layer current gives time

evolution equations of magnetic islands:
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where w is the magnetic island width, I1 = 0.827, I2 = 6.6, I3 = 6.35, η∥ is the parallel resis-

tivity, c is the velocity of the light, wc,α = (χ∥α/χ⊥α)1/8
√

8Ls/kθs, χ∥α is the parallel thermal

diffusivity, and χ⊥α is the perpendicular thermal diffusivity. Curvature parameters of ion fluid

and electron fluid are defined by

Dα =
8πκhs p′α0sL

2
s

B2
0

, (6)

for α = i,e, where κhs = κh(rs), and p′α0 is the α-species unperturbed pressure gradient at the

rational surface.
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Poloidal flows in helical plasmas are mainly driven by neoclassical viscosity. Near magnetic

islands, coupling of the RMP-induced magnetic field and current perturbation drives Lorentz

force. A poloidal flow evolution equation is given by

∂vθ
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= σ
kθsv2
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where νneo
α is the α-species neoclassical damping rate, V neo

α is the α-species neoclassical flow

velocity, µ is the phenomenological, anomalous momentum diffusion coefficient, vA is the

Alfvén velocity at the rational surface, σ = 1 for |r− rs| ≤ w/2, and σ = 0 for |r− rs| > w/2.

Criteria of self-healing and penetration without curvature effects
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Figure 1: Self-healing threshold of

RMP-driven magnetic islands.

Using Eqs. (1)-(7), thresholds of self-healing and pen-

etration in various parameter regimes are obtained[5]. In

the following, we focus on a case, where ion temperature

equals to electron temperature, the neoclassical viscosity

is dominated by the ion viscosity, the anomalous viscos-

ity is approximated by the Bohm’s diffusion coefficient,

the curvature effect is not important, and the island width

is much smaller than λ =
√

µ/νneo
i . Typical parameters

in the LHD are: a = 60[cm], R0 = 360[cm], rs/a = 0.85,

B0 = 1−2.75[T ], ι(rs) = 1, the magnetic shear at the ra-

tional surface is −2.4, and wv = 11.6[cm].

Self-healing threshold of RMP amplitude is given by

BRMP

B0
= 1.06 ε1/4

t β 1/2ν−1/4
∗h ρ3/4

∗ , (8)

where BRMP is the RMP-induced magnetic field, εt = rs/R0, β is the ion (or electron) pressure

normalized by magnetic pressure, ν∗h is the collisionality normalized by ε3/2
h rs/vti, εhB0 is the

magnitude of rippled magnetic field, vti is the ion thermal velocity, and ρ∗ is the ion Larmor

radius normalized by rs. Figure 1 shows a phase diagram of RMP-driven magnetic islands in

β −ν∗h space. A solid line is given by Eq. (8) as ν∗h = 1.1×106 β 2, where in an evolution of the

coefficient of this relation, we fixed ρ∗ as ρ∗ = 2.0×10−2 because change of ρ∗ is small in the

experiments. In Fig. 1, regions of sustainment and annihilation (self-healing) of large magnetic

islands are shown. In the LHD, data of saturation states of RMP-driven magnetic islands are

accumulated. In the experiments, a boundary between sustainment and annihilation is clear[1].

Our scaling qualitatively reproduces the experimental boundary.
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Similarly, penetration threshold of RMP amplitude is given by
BRMP

B0
= 0.17 ε1/10

t εhβ 9/20ν−7/10
∗h ρ3/4

∗ s−1/5δ−1/5, (9)

where s is the magnetic shear at the rational surface, and δ is the ion skin depth normalized

by rs. This scaling is contrary to experimental observations shown in Ref.[7], where penetra-

tion threshold of the RMP amplitude is monotonically increasing function of the magnetic shear.

This implies that there exists additional mechanism which enhances the penetration in low mag-

netic shear regime. The effect of the averaged curvature is one of candidates.

Criteria of self-healing and penetration with curvature effects

Figure 2: Stability diagram of

RMP-driven magnetic islands.

The criteria with the averaged curvature are also de-

scribed in Ref.[5]. Figure 2 shows a phase diagram of

RMP-driven magnetic islands in a space of D = De + Di

and the RMP amplitude, where the thresholds are given

by numerically solving Eqs. (1)-(7). In this analysis, D

is amplified to examine the curvature effect. The self-

healing threshold of the RMP amplitude becomes smaller

in the presence of the unfavorable averaged curvature, i.e.

RMP-driven islands tend to be sustained. The penetra-

tion threshold is not sensitive when the curvature is small,

but becomes quite sensitive if the curvature-driven tearing

mode becomes unstable, which enhances the penetration.

Summary

The self-healing threshold of RMP-driven magnetic islands in β −ν∗h space is qualitatively

well reproduced by the mode-locking theory. While, the penetration mechanism of RMP is not

fully understood, so far. In this study, we found that the unfavorable averaged curvature can

modify the penetration threshold, however, further analysis is necessary to clarify this problem.

References
[1] Y. Narushima et. al, Nucl. Fusion 51, 083030 (2011).

[2] Y. Takemura et. al, Nucl. Fusion 52, 102001 (2012).

[3] C. C. Hegna, Nucl. Fusion 51, 113017 (2011).

[4] R. Fitzpatrick, and F. L. Waelbroeck, Phys. Plasmas 19, 112501 (2012).

[5] S. Nishimura et. al, Phys. Plasmas 19, 122510 (2012).

[6] S. Nishimura et. al, Plasma Phys. Control. Fusion 55, 014013 (2013).

[7] S. Sakakibara et. al, Nucl. Fusion 53, 043010 (2013).

40th EPS Conference on Plasma Physics P4.128


