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Introduction

In non-axisimmetric toroidal magnetic configurations such as stellarators the neoclassical

transport is not intrinsically ambipolar as it is in axisymmetric tokamaks. The main contribu-

tion to the unequal transport of electrons and ions in low collisionality plasmas is due to trapped

particles in the magnetic ripples. This gives rise to a radial electric field which can be measured

over the whole plasma cross section using Heavy Ion Beam Probes (HIBP). Previous results

for the calculated ambipolar electric field using neoclassical transport1 have shown that this

field is systematically smaller than the one measured by HIBP. A possible cause may be the

suprathermal electrons that are created by the ECRH system used in most stellarators which

are pumped out to the outer plasma. Here we explore this possibility by calculating the electric

field produced by the suprathermal electrons. A kinetic description of the particle transport is

followed in which a non-maxwellian velocity distribution is assumed for the electrons having a

high velocity component. For the thermal particles, fluxes are computed from previous expres-

sions due to Kovrizhnykh. Therefore only the high energy contribution is addressed to obtain a

suprathermal flux. In this way we obtain an analytical expression for the electron fluxes which

is used to obtain the ambipolar radial electric field. This electric field is compared with the

one obtained from the thermal plasma and it will be shown that the population of suprathermal

electrons should be less than 1%. The new flux is added to the thermal electron flux so that the

relevant ambipolarity condition is

Γi = Γe +Γs. (1)

Calculation of the electron flux. In order to obtain the macroscopic flux of suprathermal elec-

trons it is necessary to start from kinetic theory. The drift kinetic equation is used together

with a model collision operator for a magnetic geometry characteristic of a stellarator. Only

suprathermal electrons are considered since it is assumed that thermal electrons and ions are

described by the existing theories. Since high energy electrons have low collision frequencies it

is possible to restrict the analysis to this regime. In the collisionality range contained between

the bounce frequency in a ripple ωb = δ 1/2vtheN/R and the drift frequency in a superbanana
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ωsb = v2
theδ/ωcer2 (i.e. ωsb < νe/δ < ωb) the thermal particle fluxes are given by [2, 3]

Γ j =−A(α)n j
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where A(α) is a geometric coefficient that depends on the ripple parameter α = ε/qNδ , ν j

the collision frequency and ai = 27.42, ae = 12.78, bi = 3.37, be = 3.45. Here the magnetic

field is modeled by a single harmonic: B≈ B0[1− ε cosθ −δ cosNϕ]. Using this same B-filed

model and taking a momentum conserving collision operator C( f ) [4], the kinetic equation is

solved for an equilibrium distribution function, F0(v), of the type expected for suprathermal

electrons created by EC-heating. In particular. the energy perpendicular to the magnetic field

is greatly increased thus creating an anisotropic distribution. The model F0(v) chosen is a ring

Maxwellian in which the maximum in v⊥ space is shifted forming a ring. It has the normalized

form

F0(r,v) = n(r)

(
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where K‖ and K⊥ are the components of the kinetic energy, Ks represents the shift in K⊥ and

measures the energy of suprathermals and p is related to the perpendicular temperature. This

function is shown in Fig.1. When solving the drift kinetic equation with heating term H( f ) for

the gyroaveraged function,

∂ f
∂ t

+(v‖b̂+vd) ·∇ f +
dE

dt
∂ f
∂E

=C( f )+H( f ) (4)

F0 is assumed to be the zeroth order equilibrium solution, i.e. C(F0)+H(F0) = 0. To next order,

one needs to integrate the equilibrium equation at constant energy ( f = F0 + f̃ )

v‖b̂ ·∇ f̃ +vd ·∇F0 =C( f̃ ) (5)

where the contribution of heating to this order is neglected. The important effect in C( f ) comes

from pitch angle scattering described by the magnetic moment µ . Standard procedure [2, 3] is

used to solve this equation for the low collisionality regime mentioned above, for ripple trapped

electrons, leading to f̃ = (sinθ0/eRν)(µ−µm)F ′0, where θ0 labels filed lines, µm = K/Bmax at

maximum turning point and ν = νee(K)+νei(K).

From f̃ the electron flux is computed integrating in angles, K and µ obtaining the result

Γs =−A(α)ns
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where A(α) is the same geometrical coefficient of Eq. (2), K̂ = Ks/T‖ represents the energy of

suprathermal electrons relative to parallel thermal energy and the coefficients c1 and c2 are

c1 =
Ip
1

K̂1+pΓ(1+ p)
, c2 =

Ip
2

Ip
1

with Ip
n =

∫
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, η(x) =
2√
π

∫ x

0
e−tt1/2dt (7)
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and H(x) = η(x) +η ′(x)−η(x)/2x+η(x̂) +η ′(x̂)−η(x̂)/2x̂, x̂ = mi/mex comes from the

energy dependence of collision frequency. They are computed numerically for a constant value

of K̂(r) taken as its maximum. Some of their values are given in the Table. It is seen that the

flux increases strongly as the energy of the supathermal electrons increases.
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Figure 1: Ring Maxwellian distribu-

tion for suprathermal electrons.

c1

K̂\p 2 3 4

1 63.14 187.8 435.6

2 984.7 2941.5 6842.6

3 4942.7 14786 34430

c2

1 5.95 6.96 7.96

2 11.95 13.96 15.96

3 17.95 20.96 23.96

Ambipolar electric field. The significance of the expression presented above for the su[rathermal

electrons flux can be estimated by the way it modifies the radial electric field. This flux can be

used in the extended ambipolarity condition Eq. (1) in order to find the resulting ambipolar elec-

tric field. Since the transport coefficients here do not depend on the electric field, as it occurs in

more elaborate models that cover different collisionality regimes [5], it is easy to solve Eq. (1)

together with Eqs. (2,6) for the radial electric field Er =−Φ′. This simple estimate gives

Er =−
Te

e
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(8)

where fs(r) = ns/n, t(r) = Ti/Te, mr =
√

mi/me. Since all plasma parameters vary with radius

the expression provides a way to compute the radial electric field profile when the radial de-

pendencies of the other quantities are provided. For this we use typical profiles for the TJ-II

stellarator for different densities. In Fig. (2) it is shown the electric field profiles for four line

averaged densities using polynomial profiles of n and Tj fitted to the experimental ones, ignor-

ing suprathermal contribution ( fs = 0). Although they are not exactly like the profiles measured

by HIBP, due to the restriction of low νe, they reproduce the main features like positive Er at

low n and completely negative Er for high n.

In order to include suprathermal particles it is necessary to give profiles for ns, T‖ and K̂.

For these we assume on-axis heating so that the ns and K̂ profiles are centrally peaked and
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Figure 2: Er profile with only thermal

particles for 4 densities. High n is blue.
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Figure 3: Er profile with suprathermal

electrons for same densities.

very narrow with a half mean width ∆ ≤ a/5. For the temperature we assume it is similar to

the thermal electrons T‖ ≈ Te. The suprathermal population is taken as 1% of the main density

( fs ∼ 0.01). The corresponding electric field profiles are shown is Fig. 3 for the same densities.

It can be appreciated that the magnitude of Er is increased substantially, especially for the inner

regions at low densities. For the high densities, the electric field can even become positive and

it is no longer all negative. Of course this behavior cannot be reliable since at high densities

the plasma is more collisional and our calculations for low collisionality are not applicable.

As expected the effect is less important near the edge since the suprathermal population is

negligible there.

In any case, the implications of the suprathermal flux are that the electric field should increase

bringing Er towards the electron root which would improve the agreement with the experiment.

This is a natural result since an increased total electron flux gives rise to positive electric fields.

More accurate computations are needed in order to compare with the experimental measure-

ments which must include equations for Γs at higher collisionalities.This work is in process.
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