
Global nonlinear gyrofluid computation

of interchange blobs in tokamak edge plasmas

M. Wiesenberger, A. Kendl

Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria

Introduction

Field aligned filaments, generally referred to as blobs, are believed [1] to be one of the main

causes of the large fluctuation levels in the scrape-off layer (SOL) of magnetically confined

plasmas. It has been shown [2] that in order to model the behaviour of these plasma blobs finite

Larmor radius (FLR) effects are important. However, the polarisation equation was linearized

to save computation time although the fluctuation level in the SOL is of order unity. We present

simulations of a global, energy conserving gyrofluid model [3] that keeps first order FLR effects

and the nonlinear term in the quasineutrality constraint.

We employ discontinuous Galerkin methods [4] to discretise the system in space on a rect-

angular grid. These schemes have the advantage of being high-order accurate and highly paral-

lelizable, and can be efficiently implemented on GPUs.

2D global gyrofluid equations

We setup our model in a slab geometry in a plane perpendicular to the magnetic field and

use the standard Gyro-Bohm scaling to make our equations dimensionless. The fully nonlinear

gyrofluid equations for electron particle and ion gyrocenter densities read [3]:

∂tne +
1
B
{φ ,ne}+neκ∂yφ −κ∂yne = ν∆ne (1a)

∂tni +
1
B
{ψ,ni}+niκ∂yψ + τκ∂yni = ν∆ni (1b)

∇

( ni

B2 ∇⊥φ

)
= ne−Γini (1c)

where ψ := Γiφ − 1
2

(
∇φ

B

)2
is the generalized potential and 1

B = 1+κx is the magnetic field

amplitude at the outboard midplane for slab geometry. Γi :=
(
1− 1

2τ∆
)−1

is the gyroaveraging

operator and τ := Ti
Te

. The viscosity ν is added in an ad-hoc manner.

Note that finite Larmor-radius (FLR) effects appear in the ion E ×B - velocity through the

generalized potential and on the right-hand side of the polarisation equation.

We simulate equations (1) in a rectangular box [0, lx]× [0, ly] with initial condition

ne(t = 0) = Γini(t = 0) = 1+A0 exp
(
−x2 + y2

2σ2

)
(2)
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σ is the initial blob width and A0 the initial amplitude. We choose periodic boundary conditions

in y-direction and Dirichlet in x:

ne(0,y) = ne(lx,y) = ni(0,y) = ni(lx,y) = 1 and φ(0,y) = φ(lx,y) = 0 (3)

Mass and energy conservation

We define the total blob mass Mblob :=
∫

dΩ[ni−1]. Mass conservation then reads

d
dt

Mblob = ν

∫
∂Ω

dA ·∇ni (4)

The global energy theorem of our model system states:

d
dt

E =
d
dt

∫
Ω

dΩ

[
ne ln(ne)+ τni ln(ni)+

1
2

ni

(
∇φ

B

)2
]
= νΓ (5)

where the first two terms are the thermal energies and the last is the kinetic energy of the E×B

- velocity. Γ represents the losses due to particle diffusion.

Our code numerically conserves both of these quantities.

Discontinuous Galerkin methods

We employ a discontinuous Galerkin [4] method to discretise the system, i.e. we expand each

function by Legendre polynomials up to order P−1. In 1d this reads:

f (x) =
N

∑
n=1

P−1

∑
k=0

f nk pnk(x) (6)

where pnk(x) is the k− th polynomial in cell n. Discretisations of derivatives then result in

sparse block matrices. Discretisation errors are ε ∝ hP in the L2-norm. We typically use P = 3

or P= 4 in our simulations. The generalized poisson equation translates into a symmetric matrix

equation which can be efficiently solved using a conjugate gradient method.

For time discretisation we use a standard explicit Adams-Bashforth multistep method.

Implementation

Our implementation follows modern C++ design principles (container free numerical algo-

rithms), which enable the separation of numerics and optimisation, through template metapro-

gramming. At the time of this writing both a single-core CPU and a GPU backend is written

using CUDA thrust and the cusp library. The code is in principle extendable to shared and

distributed memory systems without having to change the front-end interfaces.

We observe good parallel efficiency of the code due to the high degrees of parllelism in the

discontinuous Galerkin and the conjugate gradient methods.
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Figure 1: Electron density ne− 1 (top) and vorticity ∇× uE ' ∆φ

B (bottom) for τ = 1, κ = 0.0005,

ν = 10−3, initial blob width σ = 5 and blob amplitude A0 = 1. The box size is (192ρs)
2. Discontinuous

Galerkin method with 1922 grid cells and P= 4. The headers show maximum amplitude and time in units

of ω
−1
0 . The last picture shows the result of a spectral code applied to the linearized gyrofluid model.

Simulation results and discussion

We present results of two initial simulations in (Fig. 1). Both runs share the same set of physi-

cal parameters and initial conditions. However, the first timeseries on the left-hand side presents

results of the nonlinear gyrofluid model Eq. (1), while the second presents the final result of the

local (linear) case. In both cases the blobs accelerates poloidally due to the generation of a tilted

vorticity dipole that rolls up at later times. By comparing various timesteps we estimate the cen-

ter of mass trajectory to be qualitativley the same. Differences are clearly seen in the vorticity

field. In the local case strong gradients develop at the blob edge indicating a sheared flow around

the blob. The nonlinear quasineutrality constraint seems to smoothen these gradients and shows

less small scale structures.

3-d local computations of impurity convection

We further apply a 3-d multi-species electromagnetic isothermal gyrofluid flux-tube model

in toroidal geometry with edge/SOL boundary conditions on (trace) impurity convection by

interchange blobs in the SOL. This extended version of our code uses an Arakawa method for

discretization of the Poisson brackets and a local (linear) gyrofluid polarization solver. We use

similar parameters like above, here on a (96ρs)
2 perpendicular grid with resolution 256x256x8.

The parallel dynamics is determined by the ratio (qR/L⊥) = 4280, normalized beta β̂ = 2, and

collisionality Ĉ = 3.5. The resulting (particle) densities of the main plasma blob and of the

(initially radially localized) impurity species are shown in the (Fig. 2) for 4 of the 8 parallel
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Figure 2: Electron (top) and impurity (bottom) density for various poloidal positions in the local 3-d

SOL blob computation.

sections, corresponding to different poloidal locations (inside, bottom, outside, top). Note that

the x-axis represents a radial coordinate, thus the overall convection is in each section always

directed towards the lower field (outboard) side. As an outlook, the nonlinear polarization solver

will be combined with the 3-d code version.
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