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Introduction

Field aligned filaments, generally referred to as blobs, are believed [1] to be one of the main
causes of the large fluctuation levels in the scrape-off layer (SOL) of magnetically confined
plasmas. It has been shown [2] that in order to model the behaviour of these plasma blobs finite
Larmor radius (FLR) effects are important. However, the polarisation equation was linearized
to save computation time although the fluctuation level in the SOL is of order unity. We present
simulations of a global, energy conserving gyrofluid model [3] that keeps first order FLR effects
and the nonlinear term in the quasineutrality constraint.

We employ discontinuous Galerkin methods [4] to discretise the system in space on a rect-
angular grid. These schemes have the advantage of being high-order accurate and highly paral-

lelizable, and can be efficiently implemented on GPUs.

2D global gyrofluid equations
We setup our model in a slab geometry in a plane perpendicular to the magnetic field and
use the standard Gyro-Bohm scaling to make our equations dimensionless. The fully nonlinear

gyrofluid equations for electron particle and ion gyrocenter densities read [3]:
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where v :=17;¢ — % (%) is the generalized potential and % = 1 + xx is the magnetic field

amplitude at the outboard midplane for slab geometry. I'; := (1 — %TA) s the gyroaveraging
operator and 7T := % The viscosity Vv is added in an ad-hoc manner.

Note that finite Larmor-radius (FLR) effects appear in the ion E X B - velocity through the
generalized potential and on the right-hand side of the polarisation equation.

We simulate equations (1) in a rectangular box [0, ] x [0,1,] with initial condition
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o is the initial blob width and Ay the initial amplitude. We choose periodic boundary conditions

in y-direction and Dirichlet in x:

1n.(0,y) = ne(ly,y) = ni(0,y) = ni(l,y) = 1 and ¢(0,y) = ¢ (Lr,y) =0 (3)

Mass and energy conservation

We define the total blob mass My, := [ dQ[n; — 1]. Mass conservation then reads

d
— Mplob = V/ dA - Vn,- (4)
dt oQ

The global energy theorem of our model system states:

d d
—FE = dQ
dt dt /

where the first two terms are the thermal energies and the last is the kinetic energy of the E x B

2 B

2
neln(ne) + tn;ln(n;) + ln, (ﬁ) ] =vI (5)

- velocity. I" represents the losses due to particle diffusion.

Our code numerically conserves both of these quantities.

Discontinuous Galerkin methods
We employ a discontinuous Galerkin [4] method to discretise the system, i.e. we expand each
function by Legendre polynomials up to order P — 1. In 1d this reads:

P—1

N
= Z Z Pk (x (6)

where p,(x) is the k — th polynomial in cell n. Discretisations of derivatives then result in
sparse block matrices. Discretisation errors are € o< h” in the L>-norm. We typically use P = 3
or P =4 in our simulations. The generalized poisson equation translates into a symmetric matrix
equation which can be efficiently solved using a conjugate gradient method.

For time discretisation we use a standard explicit Adams-Bashforth multistep method.

Implementation

Our implementation follows modern C++ design principles (container free numerical algo-
rithms), which enable the separation of numerics and optimisation, through template metapro-
gramming. At the time of this writing both a single-core CPU and a GPU backend is written
using CUDA thrust and the cusp library. The code is in principle extendable to shared and
distributed memory systems without having to change the front-end interfaces.

We observe good parallel efficiency of the code due to the high degrees of parllelism in the

discontinuous Galerkin and the conjugate gradient methods.
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Figure 1: Electron density n, — 1 (top) and vorticity V X ug =~ A'%P (bottom) for T = 1, k¥ = 0.0005,
v = 1073, initial blob width ¢ = 5 and blob amplitude Ay = 1. The box size is (192p;)?. Discontinuous
Galerkin method with 1922 grid cells and P = 4. The headers show maximum amplitude and time in units

of Wy L. The last picture shows the result of a spectral code applied to the linearized gyrofluid model.

Simulation results and discussion

We present results of two initial simulations in (Fig. 1). Both runs share the same set of physi-
cal parameters and initial conditions. However, the first timeseries on the left-hand side presents
results of the nonlinear gyrofluid model Eq. (1), while the second presents the final result of the
local (linear) case. In both cases the blobs accelerates poloidally due to the generation of a tilted
vorticity dipole that rolls up at later times. By comparing various timesteps we estimate the cen-
ter of mass trajectory to be qualitativley the same. Differences are clearly seen in the vorticity
field. In the local case strong gradients develop at the blob edge indicating a sheared flow around
the blob. The nonlinear quasineutrality constraint seems to smoothen these gradients and shows

less small scale structures.

3-d local computations of impurity convection

We further apply a 3-d multi-species electromagnetic isothermal gyrofluid flux-tube model
in toroidal geometry with edge/SOL boundary conditions on (trace) impurity convection by
interchange blobs in the SOL. This extended version of our code uses an Arakawa method for
discretization of the Poisson brackets and a local (linear) gyrofluid polarization solver. We use
similar parameters like above, here on a (96p;)? perpendicular grid with resolution 256x256x8.
The parallel dynamics is determined by the ratio (¢R/L ) = 4280, normalized beta § = 2, and
collisionality € = 3.5. The resulting (particle) densities of the main plasma blob and of the
(initially radially localized) impurity species are shown in the (Fig. 2) for 4 of the 8 parallel
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Figure 2: Electron (top) and impurity (bottom) density for various poloidal positions in the local 3-d

SOL blob computation.

sections, corresponding to different poloidal locations (inside, bottom, outside, top). Note that
the x-axis represents a radial coordinate, thus the overall convection is in each section always
directed towards the lower field (outboard) side. As an outlook, the nonlinear polarization solver

will be combined with the 3-d code version.
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