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Ohmic current as a drive for instabilities in tokamaks can bemodeled in thelow-flowversion of

GS2 [1]. We identify kink modes in GS2 and make comparisons toanalytical results.

Introduction The radial gradient of electric current represents a sourceof free energy in fu-

sion plasmas which can drive or modify instabilities. Usingthe new version of the gyrokinetic

code GS2 developed for momentum transport studies [1], we are able to model the effect of the

induced parallel electric field on the electron distribution, thus study the impact of a current.

Dispersion relation of high-m kink modes First we present the electromagnetic disper-

sion relation of high-m kink modes in a simplified tokamak geometry. We consider a large

aspect ratior/R≪ 1, circular cross-section, low-β, toroidally symmetric equilibrium; and as-

sume a flute-like mode structuree−iωt+imθ−inζ for the perturbed quantities. Magnetic drifts,

magnetic shear effects and compressional magnetic perturbations are neglected. The induced

electron current is represented as a parallel electron flow speed−u. The non-fluctuating part

of the electron distribution is written asf0e = f∗e(ψ∗,E) + fs(R,E,µ), whereE = v2/2 +

(ea/ma)φ0, ψ∗ = ψ− (mac/ea)Rζ̂ ·v, R is the guiding center position,fs =−mev‖ufMe/Te.

f∗a = η∗a (ma/2πT∗a)
3/2 exp(−maE/T∗a), whereT∗a = Ta(ψ = ψ∗) with Ta the species tem-

perature, and the pseudo-density isη∗a = n∗a exp[eaφ0∗/T∗a] with φ0∗ = φ0(ψ = ψ∗) andn∗a =

na(ψ = ψ∗). We considerφ0 = 0. fMa = f∗a(ψ∗ → ψ). The linearized kinetic equation for the

fluctuating part of the electron distributionf1e can be written asdtf1e=−(ee/me)(E1+v×B1/c) ·
∇vf0e, with dt the unperturbed Vlasov operator, and the perturbed fieldsE1 =−∇φ1−∂tA1/c,

B1 =∇×A1.

Then following a procedure similar to that in [2] we can derive the gyro-kinetic equation

assumingu≫ ρ∗eθve. In the process, finite orbit width effects are neglected where it is appro-

priate, and for electrons we also neglect finite Larmor radius corrections to obtain

(∂t+v‖b ·∇)ge = (ee/Te)fMe(1−mev‖u/Te)(∂tφ1−v‖∂tA‖/c)

−cfMe(∂ζφ1−v‖∂ζA‖/c)(F1e−mev‖uF2e/Te)+ eeufMeE‖/Te, (1)
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wherege= f1e+fMe(1−mev‖u/Te)eeφ1/Te, withF1a=(lnna)
′+[mav

2/(2Ta)−3/2](lnTa)
′

andF2e = (lnj0)
′+[mev

2/(2Te)− 5/2](lnTe)
′. Theψ-derivative is denoted by′, j0 = −eneu

is the current density andE‖ = b ·E1. Similarly, for ions we find

(∂t+v‖b ·∇)gi = (ei/Ti)fMi(∂t〈φ1〉−v‖∂t〈A‖〉/c)− cfMi(∂ζ〈φ1〉−v‖∂ζ〈A‖〉/c)F1i. (2)

We use∂t(
∑

a ea
∫

d3vga)+B ·∇(
∑

a ea
∫

d3vv‖ga/B) =
∑

a ea
∫

d3vRHSa, whereRHSa de-

notes the right hand sides of (1) and (2), to find

(e2ene/Te)(1+ τ)∂tφ1+B ·∇[j‖/B− (eeneu/B)(eeφ1/Te)] = (e2ene/Te)

×{[1+ τ(1−αi)]∂tφ1+u∂tA‖/c}+ einic(lnpi)′αi∂ζφ1− eeune∂ζA‖(lnj0)
′+ e2eneuE‖/Te, (3)

wherej‖ is the perturbed parallel current,τ = (Te/Ti)|ei/ee|, and we kept only linear correc-

tions in αi = (k⊥ρi)
2/2. In terms ofω andk‖, (3) simplifies toik‖j‖ = iωταie

2
eneφ1/Te−

ineinic(lnpi)
′αiφ1

+ ineeuneA‖(lnj0)
′. We employ the perpendicular Ampère’s lawk2⊥A‖ = (4π/c)j‖, and as-

sumeE‖ = 0 ⇒ φ1 = ωA‖/(k‖c) to eliminateφ1. With the definitionsβi = 8πpi/B
2, ωp∗i =

(ncTi/ei)(lnpi)
′ andωj∗e = (ncTe/ee)(lnj0)

′ we obtain

ω =
ωp∗i
2

±
[

(

ωp∗i
2

)2

+
(vik‖)

2

βi
−

2ωj∗ek‖u

τ(k⊥ρi)2

]1/2

. (4)

This result is consistent with Equation (15) of [3], derivedin a shear-less slab geometry. Theωj∗e

term may dominate the expression in the bracket in (4), whichcorresponds to the appearance of

a growing mode, the growth rate of which increases with decreasingk⊥.

To study the effect of magnetic shear on the instability we may derive a dispersion relation in

a sheared slab magnetic geometry where the unperturbed magnetic field isB = B(ẑ+ ŷx/Ls).

The background plasma parameters vary in thex̂-direction. Thêx-component of the perturbed

magnetic field has the formBx= B̂(x)e−iωt+ikyy, andk‖(x) = kyx/Ls. We introduceX = kyx,

to find the dispersion relation in the form of an eigenvalue problem

X
(

∂2XX −1
)

B̂−λ
(

∂2XX −1
)

(

B̂/X
)

−σB̂ = 0, (5)

whereλ= ω(ω−ωp∗i)L2
sβi/v

2
i ≈ ω2L2

sβi/v
2
i is the eigenvalue andσ =−2Lsβiuω

j
∗e/(τk

2
yρ

2
i v

2
i )

represents the drive. We requirêB(X →±∞)→ 0. Since typicallyωp∗i ≪ ω, we will refer to

the modes withλ < 0 as unstable modes. For|σ|= 2n with a non-zero integern, the marginally

stable (λ=0) solutions of (5) are of the form̂B(X) =Xe−X1F1(1+σ/2,2,2X) =XeXPσ(X)
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for X ≤ 0 andB̂(X) = 0 for X > 0. Here,1F1 denotes the Kummer confluent hypergeometric

function, andPσ is a polynomial with only positive coefficients. The derivative of the marginally

stable solutions is discontinuous atX = 0, however it is resolved by a boundary layer at+0 for

|σ| = 2n+ δ with a smallδ > 0. The boundary layer connects theX ≤ 0 solution to a solution

∝ e−X [1+2Xe2XEi(−2X)] for X > 0. When|σ| 6= 2n, no marginally stable (λ= 0) solution

to (5) exists that would be consistent with both boundary conditions.
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Figure 1:Solutions of the eigenvalue problem (5). a:(−λ)1/2 of unstable modes corresponding to

σ= {4, 5, 7.5, 10, 20, 40, 70, 100}; the number of unstable modesmax(neig) increases withσ. b: B̂(X)

of the four unstable mode atσ = 10. c: Solid curve:−Xo, whereXo is the location of the maximum of

|B̂(X)| for the most unstable mode for givenσ. Dash-dotted curve:(−λ)1/2 of the most unstable mode.

Dashed curve:σ/2.

The mode is stable for|σ| < 2, and a new unstable mode appears at every|σ| = 2n, as illus-

trated through the numerical solution of (5) in Fig. 1a, where the markers on a curve correspond

to different eigenmodes for a fixedσ. For a givenσ, eigenfunctions having smaller growth rates

have more oscillatory radial mode structure, as shown in Fig. 1b. The location of the maximum

of B̂, denoted byXo, moves away from the origin as|σ| increases (and the corresponding|k‖|
increases). The parallel wave number that maximizes the growth rate in shear-less geometry is

k‖o = (uβiω
j
∗e)/[v

2
i (kyρi)

2τ ]; corresponding toX =−σ/2 in sheared geometry. The maximum

growth rate isγo = (u
√
βiω∗e)/[vi(kyρi)

2τ ], which corresponds to
√
−λ = σ/2. In a sheared

slabXo and
√
−λ approaches these values for increasing|σ| as seen in Fig. 1c.

Using1/Ls = s/qR, ky = nq/r andn=m/q, it can be shown that the stability criterion|σ|<
2 is equivalent with that of the kink instability, Eq. (2.29) in [4]: 4πr|∂rj0|/(cBθ)< 2m|q′/q|.

Comparison of sheared slab and GS2 simulations We compare GS2 simulations in toroidal

geometry to the predictions of the sheared slab model (SSM).In GS2 magnetic drifts and other

effects of the toroidal geometry are accounted for in contrast to the SSM, and the complete

lowest order gyrokinetic-Maxwell system of equations is solved. In toroidal geometrya is the

minor radius, while it is only a unit of length in the SSM. The comparison in the form of
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different parameter scalings around a set of baseline parameters is shown Fig. 2a-e. Considering

the strong simplifying assumptions leading to the sheared slab dispersion relation (5) we find a

reasonably good agreement between GS2 and the SSM in terms ofmode frequencies and growth

rates; the agreement improves for stronger instability drive (such as higherβi, u, (kyρi)−1). The

radial eigenfunction in the SSM,̂B(X), is related to the ballooning eigenfunctionBψ(θ) by a

Fourier transformationF , asB̂(X) ∝ F−1[Bψ(−θ/s)]. In Fig. 2f we compare the normalized

amplitude ofB̂(X) as obtained from the SSM (dashed) and calculated from the GS2results for

A‖(θ), showing a convincing agreement.
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Figure 2:real frequenciesωr[vi/a] (dashed lines), and growth ratesγ[vi/a] (solid lines) of the highest-γ

kink mode in the sheared slab model (thin lines) and in GS2 (thick lines). a-e: scalings withβi, safety

factor q, magnetic shears, electron flow speedu, kyρi, respectively. f: Radial eigenfunctions in sheared

slab (dashed) and in GS2 (solid) forβi = {0.004, 0.01, 0.02}. Baseline parameters:u/vi =1, βi = 0.01,

a/Ln = 3, a/LT i = a/LTe = a/Lu = 0, kyρi = 0.15, a/R= 0.1, r/a= 0.5, s= 1, q = 10, νei = 0

Conclusions The effect of current gradient as a drive for microinstabilities is modeled using

the low-flow version of GS2. We compare kink modes in GS2 to simplified analytical theory and

find a reassuring agreement. GS2 may be used to study current gradient effects on instabilities.
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