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Electron flow driven instability in finite beta plasmas
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Ohmic current as a drive for instabilities in tokamaks camoeleled in théow-flowversion of

GS2 [1]. We identify kink modes in GS2 and make comparisorantdytical results.

Introduction  The radial gradient of electric current represents a sooiréee energy in fu-
sion plasmas which can drive or modify instabilities. Usihg new version of the gyrokinetic
code GS2 developed for momentum transport studies [1], ealale to model the effect of the

induced parallel electric field on the electron distribatithus study the impact of a current.

Dispersion relation of high-m kink modes First we present the electromagnetic disper-
sion relation of high-m kink modes in a simplified tokamak getry. We consider a large
aspect ratio/ R < 1, circular cross-section, low; toroidally symmetric equilibrium; and as-
sume a flute-like mode structurg™t+imé—in¢ for the perturbed quantities. Magnetic drifts,
magnetic shear effects and compressional magnetic patitoms are neglected. The induced
electron current is represented as a parallel electron fi@ed—u«. The non-fluctuating part
of the electron distribution is written af. = fie(Vs, E) + f5(R, E, 1), where E = v?/2 +
(ea/mMa) 0, Us = ¥ — (mqc/eq) RC -V, R is the guiding center positiorf, = —mevjufase/Te.
Jra = Nxa (ma/27rT>,<a)3/2 exp (—mqE /Tyq), whereT,, = T, (¢ = 1) with T, the species tem-
perature, and the pseudo-densityis = n.q expleqdos/Tia] With ¢ = do(¢ = i) andn,, =
ne (1 = 14). We considery = 0. farqa = f«a(sx — ). The linearized kinetic equation for the
fluctuating part of the electron distributigin. can be written ag; f1. = —(e./me) (E1 +Vv x By /c)-
Vo foe, With d; the unperturbed Vlasov operator, and the perturbed fields — V¢, — 0,A1 /¢,
B =V xA;.

Then following a procedure similar to that in [2] we can derihe gyro-kinetic equation
assuming: > p..ve. In the process, finite orbit width effects are neglectedreliieis appro-

priate, and for electrons we also neglect finite Larmor radrrections to obtain

(8,5 + UHb . V)ge = (ee/Te)fMe(]- — mevuu/Te)(atqbl — UH&AH/C)

—CfMe(acgbl — UH(()CAH/C) (Fle — mevﬂuFQe/Te) + eeufMeEH/Te; (1)
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wherege = fie + fare(1—mevju/Te)ecpr/Te, with Fi = (Inng) +[mev?/(27,) —3/2)(In T,
and Fy, = (Injo)' + [mev?/(2T:) — 5/2](InT,)'. Thev-derivative is denoted by jo = —en.u

is the current density anfl = b - E;. Similarly, for ions we find
(O + v b-V)gi = (ei/Ti) fari(Oc(P1) — v 9 A)) [ ¢) — ¢ fari(Oc (P1) — v O (A [e) Fri- - (2)

We used; (Y, eq [ d*vga) +B- V(X , eq [ dPovyga/B) =, €a [ d*vRHS,, whereRHS, de-
notes the right hand sides of (1) and (2), to find

(ezne/Te)(l +7)0kp1+B- v[jH/B — (eeneu/B)(eed1/Te)| = (egne/Te)
XA+ 7(1 — )|0sp1 +udi Ay [ e} + einic(Inp;) ;01 — ecunede Ay (Injo)' + ezneuE”/Te, (3)

wherej is the perturbed parallel current= (T./T;)|ei/ee|, and we kept only linear correc-
tions ina; = (k, p;)?/2. In terms ofw and k., (3) simplifies toik)j = iwTazeinegy /T, —
ine;n;c(Inp;) a;dr

+inecuncA)(Injo)'. We employ the perpendicular Ampere’s I&&AH = (4r/c)jy, and as-
sumeFl); = 0= ¢1 = wA|/(kjc) to eliminates;. With the definitionss; = 8mpi/ B, Wb, =

(ncTy/e;)(Inp;) andwl, = (ncT./e.)(In o) we obtain

2 2 i 1/2
w= w_fl + (w_fz) (Uzk?H) _ 2w16k||u . (4)
2 2 pi T(kLpi)?

This result is consistent with Equation (15) of [3], derivieé shear-less slab geometry. Thie
term may dominate the expression in the bracket in (4), wbichesponds to the appearance of
a growing mode, the growth rate of which increases with desingk | .

To study the effect of magnetic shear on the instability wg dexive a dispersion relation in
a sheared slab magnetic geometry where the unperturbeceti@afield isB = B(z + yx/Ls).
The background plasma parameters vary initidrection. Thez-component of the perturbed
magnetic field has the ford, = B(x)e~ !+, andk (z) = kyz/Ls. We introduceX =k,

to find the dispersion relation in the form of an eigenvalusbpgm
X (0%x—1)B=A(0%y —1) (B/X)—aézo, (5)

wherel = w(w —w?.)L23; /v ~ w?L2B3;/v? is the eigenvalue and= —2L56¢uw£e/(7k§pgv?)

represents the drive. We requi&{X — +00) — 0. Since typicallyw?; < w, we will refer to
the modes with\ < 0 as unstable modes. Ffar| = 2n with a non-zero integet, the marginally

stable § = 0) solutions of (5) are of the forf (X ) = Xe X F(1+0/2,2,2X) = XeX P,(X)
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for X <0 andB(X) =0 for X > 0. Here,; '} denotes the Kummer confluent hypergeometric
function, andP, is a polynomial with only positive coefficients. The derivatof the marginally
stable solutions is discontinuousat= 0, however it is resolved by a boundary layerdt for

lo| = 2n+ 6 with a small§ > 0. The boundary layer connects the< 0 solution to a solution

oc e X [14+2Xe*XEi(—2X)] for X > 0. When|o| # 2n, no marginally stableX = 0) solution

to (5) exists that would be consistent with both boundarydawns.

50.0F*

10.0f

(-1)¥?

1 2 5 10 20 50 -15 -10 -5 0 2 5 10 20 50
Neig X a

Figure 1:Solutions of the eigenvalue problem (5). (a:\)'/? of unstable modes corresponding to
o=1{4,5,7.5,10, 20, 40, 70, 100}; the number of unstable modesx(n.i,) increases witty. b: B(X)

of the four unstable mode at= 10. c: Solid curve:—X,, whereX, is the location of the maximum of
| B(X)| for the most unstable mode for givenDash-dotted curve{—\)!/2 of the most unstable mode.
Dashed curves /2.

The mode is stable fgr| < 2, and a new unstable mode appears at elglry- 2n, as illus-
trated through the numerical solution of (5) in Fig. 1a, vehieie markers on a curve correspond
to different eigenmodes for a fixed For a givens, eigenfunctions having smaller growth rates
have more oscillatory radial mode structure, as shown inHigThe location of the maximum
of B, denoted byX,, moves away from the origin as| increases (and the correspondihg
increases). The parallel wave number that maximizes thetgnate in shear-less geometry is
ko = (uBiwle) /[v? (kyp:)?7]; corresponding toX = —/2 in sheared geometry. The maximum
growth rate isy, = (uy/Biwse)/[vi(kypi)?7], which corresponds tg/—X = /2. In a sheared
slab X, andv/—\ approaches these values for increasirigs seen in Fig. 1c.

Usingl/Ls=s/qR, k, =ng/r andn =m/q, it can be shown that the stability criteripn <
2 is equivalent with that of the kink instability, Eq. (2.29) [4]: 47r|0,jo|/(cBg) < 2mlq’ /q|.

Comparison of sheared slab and GS2 simulations We compare GS2 simulations in toroidal
geometry to the predictions of the sheared slab model (SBMGS2 magnetic drifts and other
effects of the toroidal geometry are accounted for in cattta the SSM, and the complete
lowest order gyrokinetic-Maxwell system of equations ik/ed. In toroidal geometry: is the

minor radius, while it is only a unit of length in the SSM. Thengparison in the form of
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different parameter scalings around a set of baseline peasis shown Fig. 2a-e. Considering
the strong simplifying assumptions leading to the shedadddispersion relation (5) we find a
reasonably good agreement between GS2 and the SSM in temusleffrequencies and growth
rates; the agreement improves for stronger instabilityediguch as highet;, u, (k,p;) ™). The
radial eigenfunction in the SSMZ(X), is related to the ballooning eigenfunctidh, (¢) by a
Fourier transformatiotf, asB(X) o F1By(—0/s)]. In Fig. 2f we compare the normalized
amplitude of3(X) as obtained from the SSM (dashed) and calculated from ther&Si#ts for

Ay (9), showing a convincing agreement.
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Figure 2:real frequencies,.[v; /a] (dashed lines), and growth ratesv; /a] (solid lines) of the highest-
kink mode in the sheared slab model (thin lines) and in GS2 (thick lines)seaéngs withs;, safety
factor ¢, magnetic sheas, electron flow speed, k, p;, respectively. f: Radial eigenfunctions in sheared
slab (dashed) and in GS2 (solid) f6r= {0.004, 0.01, 0.02}. Baseline parameters:/v; = 1, 8; = 0.01,
a/L,=3,a/Lri=a/Lre=a/L,=0,kyp; =0.15,a/R=0.1,7r/a=0.5,s=1,¢=10, v, =0

Conclusions The effect of current gradient as a drive for microinstaiesi is modeled using
the low-flow version of GS2. We compare kink modes in GS2 tqsiftad analytical theory and
find a reassuring agreement. GS2 may be used to study curesleigt effects on instabilities.
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