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Abstract

In the present paper, we solve a twist symplectic map for the action of an ergodic mag-
netic limiter in a large aspect-ratio tokamak. In this model, we study the bifurcation scenar-
ios that occur in the remnants regular islands that co-exist with chaotic magnetic surfaces.
The onset of atypical local bifurcations created by secondary shearless tori are identified
through numerical profiles of internal rotation number and we observe that their rupture
can reduce the usual magnetic field line escape at the tokamak plasma edge.

Appropriated modifications on the magnetic field have indicated an improvement to the
plasma confined in tokamaks [1]. In this scense an adequate chaotization of field lines can
reduces the plasma-wall interaction and the anomalous particle transport. Such chaotic field
lines can be induced by external devices as the ergodic limiter [2] and the dynamic ergodic
divertor [3].

As is well-known, magnetic field lines can be represented by a 1 + 1/2 degree of freedom
Hamiltonian system. Thus, these field line Hamiltonian can be replaced by symplectic maps [4].
In general, symplectic maps are classified as twist, when the rotation numbers increase mono-
tonically; otherwise they are nontwist. The twist condition is assumed in several mathemati-
cal theorems such as the Poincaré-Birkhoff, Aubry-Matter, and the Kolmogorov-Arnold-Moser
(KAM) theorem. These theorems are the basis of the twist map scenario but their predictions are
not verified for the nontwist maps, which present distinctive features in the phase space such as
the presence of a nontwist invariant torus (shearless torus), and the separatrix reconnection pro-
cess. Nevertheless, recent studies [5, 6] reported the onset of secondary shearless tori (twistless
tori) that appear within islands of stability in the phase space of simple twist maps.

In the present paper, we solve a twist symplectic map introduced to describes chaotic field
lines in tokamaks with ergodic limiter [7]. It is constituted by the convolution of two maps,
F=F,0F>:

Onr1 = 6 T qeq( 7 T arcosty 6,11 = Oni1 _C8< )m_zcos<m9”“)

where F] defines the equilibrium map with a; being the correction for toroidal effect. The

function g, is the monotonic equilibrium safety factor defined by:
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Qeq(r) =

In the pertubation map, F», we have C = 2mla® /Roq,b* and € being the perturbation param-
eter related with the ratio between the limiter and plasma current, € = I;,/I,,. In the following
phase spaces, we will use the normalized coordinates x = 60/2w and y = 1 — r/b and a set of
parameters: a; = —0.04, Ry = 0.3m, b = 0.11m, a = 0.08m and [ = 0.08m.

Recently, the presence of one shearless torus were analytically predicted for generic Hamil-
tonian system in the neighborhood of the tripling bifurcation of an elliptic fixed point [5]. Fur-
thermore, numerical investigations suggest a specific profile containing two shearless tori near
the quadrupling (1/4) bifurcation [6].

As we are interested in localized regular islands immersed in chaotic regions of the phase
space of our model, we define the internal rotation number to measure the torsion of each torus

with respect to its elliptic fixed point:

1
Win = lim — Z Po(x,y)0P11(x,y), (1)

n—oo ﬂn

where PnéP,,+1 means the angle 6 between two consecutive points and (x, y) are the coordinates
of the two-dimensional map. By equation 1 a rational internal rotation number (n/m) describes a
periodic orbit while an irrational number represents a circular quasi-periodic orbit. For a chaotic
orbit, equation 1 does not converge.

To illustrate the emergency of secondary shearless torus within islands of stability, we choose
a value to € that presents a phase space whose the chaotic layer near the border y = 0 is com-
posed by only one visible remaining island chain. See in figure 1 the period-5 island chain
whose elliptic fixed point has bifurcated in a period-4.

The evolution of the internal rotation number profiles to the highlighted island in figure 1 are
shown below of the same figure 1. For € = 0.185 the internal rotation number profile is mono-
tonic, 1. e., each specific value of wj, is related to only one circular invariant torus. Increasing
the parameter to € = (0.188 we observe the formation of two bumps. The presence of a minimum
and a maximum point in the rotation profile indicates the existence of two tori without shear. For
€ = 0.189, the maximum bump reaches the value @;, = 1/4 yielding four stable fixed points, so
long as the minimum bump still exist and does not bifurcate for any lower order rational number
and ends colliding with elliptic fixed point.

In spite of secondary shearless tori be a local phenomena and, consequently, do not interfere
in global properties of the chaotic layer it is relevant, in the tokamak context, to study the

transport process while these secondary shearless exist.
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Figure 1: Phase space of the Ullmann map with € = 0.189 and m = 6 (top). The quadrupling bifurcation
created by secondary shearless torus (bottom).

In order to investigate the transport properties on initial conditions, we computed the average
escape time of orbits by the following numerical experiment. For a given value of €, we tested
a large number of initial points (Np = 2 x 10°) placed on a regularly spaced grid of same size
of the upper box of figure 1. Each initial condition was iterated until the corresponding orbit
crossed the reference boundary y = 0. From figure 2 (escape time) we observe a strong depen-
dence on € with several peaks. The higher peak, € = 0.18995, corresponds to the lower order
bifurcation (41'1) and it is also the limit to the existence of the secondary shearless torus. This
atypical escape time around a specific value of € indicates some kind of trapping mechanism
that hinders the transport. The fine details of the dependence of the escape time on the initial
conditions is shown in figure 2 (right), for two different values of €: one of them corresponding
to short escape time (blue dotted line labeled as a. in figure 2) and the second to long escape time
(red dashed line labeled as b. in figure 2). Each initial condition was iterated 3 x 10° times and
the different escape times are indicated by a logarithmic color scale. It is clear that points inside
the islands, evidently, do not escape and are identified with red color, but the orbits adjacent to
them may spend long or short time to reach the reference boundary y = 0. Comparing figure 2
(a) and (b) we see that figure 2 (b) presents reasonable amount of initial conditions that spend
long times (= 1 x 10°, orange color) encircling the island. This type of stickiness interferes in

the average escape time and, consequently, in the global transport of the system.
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Figure 2: Escape time (left) and the details of label a. and b. in the phase space.

Concluding, we addressed the chaotic transport of magnetic field lines in tokamak plasma
edge. In our work, the resonant perturbations that break the magnetic surfaces are those created
by an external ergodic limiter. In this case, the perturbed field line mapping is approximately
obtained, for large aspect ratio tokamaks. The obtained map allows us to analyze the influ-
ence of the relevant control parameters, related to the equilibrium and perturbing fields, on the
transport of field lines. More specifically, we show the onset of secondary shearless curves in
equilibria with monotonic safety factor profiles and how such bifurcation affects the plasma

edge transport [8].
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