40" EPS Conference on Plasma Physics P4.160

Lattice Boltzmann Model for the Charney-Hasegawa-Mima equation

M. Held, A. Kendl

Institue for lon Physics and Applied Physics, University of Innsbruck,
Technikerstr. 25, A-6020 Innsbruck, Austria

Introduction
The Charney-Hasegawa-Mima (CHM) equation serves as a basic prototypical two-dimensional
one-field model for electrostatic drift wave turbulence in magnetised plasmas with cold ions and

isothermal adiabatic electrons [1]

(1-9)280 258 {05050}

The equation is normalized according to x < x/ps and ¢ < k,®;¢ for the length and time
scales, and 8¢ < Kk, ' (e¢ /T,) for the electrostatic potential ¢. Here k;, = py/L, is the drift ratio
between the drift scale p; = \/m;T,/eB (corresponding to a gyro radius of ions of mass m; at
electron temperature 7,) and the gradient length L, = |d,Inng(x)|~! of the static background
density ng(x). The sound speed enters as c; = /T, /m;, and the gyro frequency as w.; = c/ps.
The CHM equation can be obtained from the continuity and momentum equations for a cold
uniformally magnetised ion fluid (7; < T,) with adiabatic electron response and a negative
background density gradient in x-direction, n; = n, = no(x) exple¢ /kT,]. The normalized ion
continuity and momentum equations can be expressed in terms of the potential instead of density

as [1]
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where d/dt = d; +u -V is the advective derivative. The implemented lattice Boltzmann model
(LBM) makes use of the last two equations, since these equations resemble CHM dynamics

under drift ordering (x, < 1).

Lattice Boltzmann model

The most important ingredients of the LBM are specified as follows

1. Lattice geometry
The implementation of an D2Q9 lattice (2 dimensions, 9 lattice velocities &) fixes the

lattice speed of sound ¢, = (1/\/_)(5x/5t) — /0(8x/8t) and the weights
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2. Discretization technique and collision operator
The Collision step is approximated by the trapezoid rule, which turns the lattice Boltz-
mann equation into an implicit relation. Hence an transformation from f; < f; is applied
to obtain a similar explicit scheme for f;, which however leads to an implicit relations for
the velocity moments over the distribution function f; [S]. This implicitness is bypasses by
a well founded incompressible approximation for the potential and velocity shifts which
avoids an implementation of e.g. Newton’s method. The relaxation of the distribution
function to local Maxwellian equlibrium is untertaken by the Bathnagar-Gross-Krook
(BGK) operator with a single relaxation time 7*. Hence the lattice Boltzmann equation is

split up into the collision step

~ _ - 27*6t
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and the streaming step
filx+8&,61,t+81) = f (x,1); (5)
with the approximated potential and velocity shifts
¢
¢ < 1 57 L (6)
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3. Equilibrium distribution function (EDF)
The barotropic equation of state P = ¢2 / (21(3) of the macroscopic equations together

with the lattice geometry determines the EDF to [3]
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4. Forcing function (FF) with source and force terms
An augmented FF [4] is derived to reproduce the dynamics of the nonsteady and non-

uniform density gradient source term
S = Kyl - ey, )
and Lorentz force term

1
a=—(uxe;)+us, (10)
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which contains a cross product and a correction, which cancels a spurious term in the

momentum equation. The latter two equations enter the adapted FF in its present form
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5. Boundary conditions
For stability reasons, free-slip boundary conditions are chosen on the east and west bound-
aries (in “radial” direction in terms of drift wave terminology), whereas the north and
south boundaries (in “poloidal” direction) are treated periodically [2]. The rigid walls on
east and west are set on the outermost lattice nodes, which corresponds to an on-site re-
flection of the perpendicular components of f. On east the distribution function is flipped

according to f3 — f1, fs — f5, f7 — f3, and vice versa for the west boundary.

Numerical test results

The proposed LB model (first row of the figures) is cross-verified with a conventional fi-
nite difference scheme (second row) which directly solves the CHM eq., including an artificial
hyperviscocity. This FD scheme uses a 3rd order multi-step method for time integration, an
Arakawa discretization of the Poisson brackets, and an FFT Poisson solver [6]. For all follow-
ing computations the drift parameter is set to k;, = 0.05, the normalized box size is fixed to
Lo = 64, and the LB viscosity to v = 0.0002. Furthermore a resolution of Ny = N, = 2048 is
chosen, which fullfills the stability criterion (8¢/8x?) ~ 1 for these parameters. The three test
cases dispersive spreading of a monopole (first column of Fig. 1), stable drift modon propa-
gation (second column of Fig. 1) and decaying turbulence (third column of Fig. 1) reflect the
expected drift wave turbulence behaviour, except for the drift modon case. Here the incompress-
ible approximation in the velocity shifts (eq. (6) and (7)) causes to break the stability of the drift
modon by a slight shear. This deviation disappears for highly incompressible flows with drift
parameters of kx;, < 0.001. The computational performance of our present LBM implementation
lags a little behind the employed conventional method. Nevertheless the LBM is preferably ap-
plicable for highly resolved (in time and space) numerical investigations once its full potential

of parallelization is exploited, since the deviations would disappear in this limit.
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Figure 1: The first column shows the dispersive spreading of an initial monopole with small

amplitude. The second column reflects the distortion of a stable drift modon by a small shear.

The third column presents the advanced state of the turbulent potential field. The tendency to

large scale zonally extended structures is visible.
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