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Introduction

The Charney-Hasegawa-Mima (CHM) equation serves as a basic prototypical two-dimensional

one-field model for electrostatic drift wave turbulence in magnetised plasmas with cold ions and

isothermal adiabatic electrons [1](
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∂δφ
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+
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−
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The equation is normalized according to xxx ← xxx/ρs and t ← κnωcit for the length and time

scales, and δφ ← κ−1
n (eφ/Te) for the electrostatic potential φ . Here κn = ρs/Ln is the drift ratio

between the drift scale ρs =
√

miTe/eB (corresponding to a gyro radius of ions of mass mi at

electron temperature Te) and the gradient length Ln = |∂x lnn0(x)|−1 of the static background

density n0(x). The sound speed enters as cs =
√

Te/mi, and the gyro frequency as ωci = cs/ρs.

The CHM equation can be obtained from the continuity and momentum equations for a cold

uniformally magnetised ion fluid (Ti � Te) with adiabatic electron response and a negative

background density gradient in x-direction, ni = ne = n0(x)exp[eφ/kTe]. The normalized ion

continuity and momentum equations can be expressed in terms of the potential instead of density

as [1]
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where d/dt = ∂t +uuu ·∇∇∇ is the advective derivative. The implemented lattice Boltzmann model

(LBM) makes use of the last two equations, since these equations resemble CHM dynamics

under drift ordering (κn� 1).

Lattice Boltzmann model

The most important ingredients of the LBM are specified as follows

1. Lattice geometry

The implementation of an D2Q9 lattice (2 dimensions, 9 lattice velocities ξξξ i) fixes the

lattice speed of sound cL = (1/
√

3)(δx/δ t) =
√

θ(δx/δ t) and the weights

wi = {4
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
36 ,

1
36 ,

1
36 ,

1
36} [2].
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2. Discretization technique and collision operator

The Collision step is approximated by the trapezoid rule, which turns the lattice Boltz-

mann equation into an implicit relation. Hence an transformation from fi← f̄i is applied

to obtain a similar explicit scheme for f̄i, which however leads to an implicit relations for

the velocity moments over the distribution function fi [5]. This implicitness is bypasses by

a well founded incompressible approximation for the potential and velocity shifts which

avoids an implementation of e.g. Newton’s method. The relaxation of the distribution

function to local Maxwellian equlibrium is untertaken by the Bathnagar-Gross-Krook

(BGK) operator with a single relaxation time τ∗. Hence the lattice Boltzmann equation is

split up into the collision step

f̄ ∗i (xxx, t) = f̄i(xxx, t)−
2

2τ∗+1
(

f̄i(xxx, t)− f eq
i (xxx, t)

)
+

2τ∗δ t
2τ∗+1

Fi(xxx, t); (4)

and the streaming step

f̄i(xxx+ξξξ iδ t, t +δ t) = f̄ ∗i (xxx, t); (5)

with the approximated potential and velocity shifts
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3. Equilibrium distribution function (EDF)

The barotropic equation of state P = φ 2/(2κ2
n ) of the macroscopic equations together

with the lattice geometry determines the EDF to [3]
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4. Forcing function (FF) with source and force terms

An augmented FF [4] is derived to reproduce the dynamics of the nonsteady and non-

uniform density gradient source term

s = κnuuu · eeex, (9)

and Lorentz force term

aaa =
1
κn

(uuu× eeez)+uuus, (10)
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which contains a cross product and a correction, which cancels a spurious term in the

momentum equation. The latter two equations enter the adapted FF in its present form

Fi = wiφ
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with gi = {1,−2,−2,−2,−2,4,4,4,4}.

5. Boundary conditions

For stability reasons, free-slip boundary conditions are chosen on the east and west bound-

aries (in “radial” direction in terms of drift wave terminology), whereas the north and

south boundaries (in “poloidal” direction) are treated periodically [2]. The rigid walls on

east and west are set on the outermost lattice nodes, which corresponds to an on-site re-

flection of the perpendicular components of f̄ . On east the distribution function is flipped

according to f̄3→ f̄1, f̄6→ f̄5, f̄7→ f̄8, and vice versa for the west boundary.

Numerical test results

The proposed LB model (first row of the figures) is cross-verified with a conventional fi-

nite difference scheme (second row) which directly solves the CHM eq., including an artificial

hyperviscocity. This FD scheme uses a 3rd order multi-step method for time integration, an

Arakawa discretization of the Poisson brackets, and an FFT Poisson solver [6]. For all follow-

ing computations the drift parameter is set to κn = 0.05, the normalized box size is fixed to

L0 = 64, and the LB viscosity to ν = 0.0002. Furthermore a resolution of Nx = Ny = 2048 is

chosen, which fullfills the stability criterion (δ t/δx2) ≈ 1 for these parameters. The three test

cases dispersive spreading of a monopole (first column of Fig. 1), stable drift modon propa-

gation (second column of Fig. 1) and decaying turbulence (third column of Fig. 1) reflect the

expected drift wave turbulence behaviour, except for the drift modon case. Here the incompress-

ible approximation in the velocity shifts (eq. (6) and (7)) causes to break the stability of the drift

modon by a slight shear. This deviation disappears for highly incompressible flows with drift

parameters of κn≤ 0.001. The computational performance of our present LBM implementation

lags a little behind the employed conventional method. Nevertheless the LBM is preferably ap-

plicable for highly resolved (in time and space) numerical investigations once its full potential

of parallelization is exploited, since the deviations would disappear in this limit.
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Figure 1: The first column shows the dispersive spreading of an initial monopole with small

amplitude. The second column reflects the distortion of a stable drift modon by a small shear.

The third column presents the advanced state of the turbulent potential field. The tendency to

large scale zonally extended structures is visible.

Scientific Computing at the University of Innsbruck; and by the European Commission under

the Contract of Association between EURATOM and ÖAW carried out within the framework

of the European Fusion Development Agreement (EFDA). The views and opinions expressed

herein do not necessarily reflect those of the European Commission.

References

[1] W. Horton and A. Hasegawa, Chaos 4, 227 (1994).

[2] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Uni-

versity Press, 2001.

[3] P.J. Dellar, Phys. Rev. E, 65, 036309 (2002).

[4] Y. Cheng, J. Li International Journal for Numerical Methods in Fluids 6, 629 (2008).

[5] P.J. Dellar, Computers & Mathematics with Applications 65, 129 (2013)

[6] V. Naulin and A.H. Nielsen, SIAM J. Sci. Comput. 25, 104 (2003).

40th EPS Conference on Plasma Physics P4.160


