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Introduction

Plasma turbulence evolves from a considerable class of instabilities characterized by long

parallel wavelengths, of the order of the system size, and short perpendicular wavelengths of the

order of the ion gyro-radius. As a consequence, from the numerical viewpoint, one can conceive

that much more efficient codes are made possible by a suitable choice of coordinates, that allow

the smallest number of grid points in a certain direction. Indeed, field-aligned coordinates have

been employed for already a couple of decades in tokamak turbulence simulations [1, 2, 3].

The gain in computational efficiency obtained by using optimal coordinates can be a couple of

orders of magnitude for a turbulence simulation of a large device like ITER.

Field-aligned coordinates employed so far are derived from predefined flux coordinates. The

scope of this work is to illustrate and validate a more general approach that rely only on funda-

mental coordinates independent of the flux surface variables [5].

Turbulent transport in tokamaks is studied via numerical simulations of a variety of model

equations which retain the important physics one wants to study. A fairly general structure of

model equations is given as follows:

∂tL ·S = E(S)+ I ·S (1)

where S is a structure of vectors representing the state of the system. E(S) is a nonlinear operator

that can be treated explicitly without much penalty. L and I represent linear operators such that

the reduced problem obtained by setting E(S) = 0 could be treated implicitly. The splitting of

the right hand side (r.h.s.) between E and I is by no means unique and depends on the physics

to be studied. As a general rule, one aims at treating explicitly only the physics occurring at the

timescale of interest for the specific problem. The main constraint with respect to a generic r.h.s.

is that the implicit problem be linear. We further assume that L and I are time-independent.

Since we are interested in the treatment of the parallel dynamics, we now specialize Eq. (1) to

the following normalized drift-wave model. This model will be used to illustrate our approach
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throughout the rest of this work:

∂tn+[φ , log(n0)]+A∇‖u = 0

∂tu+ 1
τ
A∇‖n+A∇‖φ = 0

n = φ −ρ2
∗∇

2
⊥φ

(2)

Here n is the perturbed ion guiding center density, n0 is the equilibrium density profile, u is the

ion parallel velocity and φ is the electrostatic potential. We define two dimensionless param-

eters: A = a/R× 1/ρ∗ where a is the tokamak minor radius, R is the tokamak major radius,

ρ∗ = ρs/a is the reduced gyro-radius with ρs being the ion sound Larmor radius. Moreover τ is

the ratio of electron temperature to ion temperature Te/Ti. Note that time is normalized to the

Bohm timescale a2/(ρscs), where cs is the ion sound speed. The explicit expression of the par-

allel derivative operator ∇‖ depends on the magnetic field structure. In the case of a cylindrical

geometry one can write ∇‖ = ∂φ + 1/q(r) ∂θ with (r,θ ) the polar coordinates in the poloidal

plane and q(r) the safety factor.

The Flux-Coordinate Independent (FCI) Approach

The field-aligned coordinate approach presented in [4] still relies on flux coordinates, for

instance (r,θ ). A new method is presented in [5] that we refer to as FCI (Flux-Coordinate

Independent) approach. One has to look for a change of coordinates from the original (x,y,z)

to a new set (ξ α ,s) such that s can be treated as a slowly-varying coordinate and only the two

ξ α (α = 1,2) carry the information on the small scales. As discussed in [5], one divides the

domain in a certain number of sectors centered around zk, and extending to the boundary in the

(x,y) directions, with k labeling a given sector. One then considers a set of transformations of

the form:  ξ α =V α(x)+Cα(x)(z− zk)

s = z− zk

(3)

where V α(x) and Cα(x) are yet unknown functions.

Results and Conclusions

We developed a new code that we called FENICIA: Flux indepENdent fIeld-aligned CoordInate

Approach, in which we implemented the FCI approach described in the previous section. A

sketchy description of this new code is given in Appendix A of [5]. The actual implementa-

tion of the parallel derivative depends on the scheme of choice. In the following, we consider
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second order centered finite differences, since they are used to solve the drift-wave test model

(2). Here we present numerical tests that were carried out with FENICIA to qualify the new

method. These are of two types: a) a test that demonstrates the capability of the new method to

simulate wave propagation accurately even when the toroidal mode number exceeds the Nyquist

cut-off (half the number of toroidal points) at the given toroidal resolution. This is precisely the

situation where the straightforward approach that computes the parallel derivative as a combi-

nation of the toroidal and poloidal derivatives would fail, and b) a test of convergence using a

nonlinear ITG model. For the tests shown here the box size is 400× 400× 20 and m/n = 2,

with (m,n) ranging from (4,2) to (30,15). We start by showing results obtained from Eq. (2)

with log(n0) = 0 (zero drift frequency). The initial velocity is such that there is a single wave

propagating at frequency ω = A(1+1/τ)1/2(m/q(r)−n). The results are summarized in Fig. 1

where the error per unit time E = (< (nexact−ni)
2 > /< (nexact)

2 >)1/2 is plotted as a function

of the poloidal mode number for three cases: 1) the full model (2) with Ln = 1/4 and A = 12.5,

2) the same model with 1/Ln = 0 (no density gradient), and 3) the model with A = 0. The latter

case tests the effect of switching off the parallel dynamics so that the system reduces effectively

to

∂tn+[n, log(n0)] = 0 (4)

The first thing to notice is that all the tests give an error per unit time much less than one. We

Figure 1: The relative error between between the exact and the numerical solution as a function of the

poloidal wavenumber m. For case 1: full model with finite drift frequency, we get the blue solid line; For

case 2: full model with zero drift frequency, we get the red dashed line; For case 3: reduced model of

Eq. (4) without sound wave terms, we get the green bullets

remark that the relative difference between case 1 and case 3 is less than 10−3, which explains
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why the data points for the two cases look almost superposed in Fig. 1. Since the model is

normalized to the Bohm timescale a2/(ρscs), any physics effect occurring on a shorter time

scale is treated accurately.

The second following test shows the convergence of the code using an ITG turbulence model.

Convergence is achieved at nz = 15. Thus, with the new method, one needs only a few tens

of toroidal points to get a good result, regardless of the toroidal mode number, provided that

adequate resolution is available in the poloidal plane.
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Figure 2: convergence test using an ITG turbulence model

In conclusion, a new approach to the problem of field-aligned coordinates for plasma tur-

bulence simulations has been developed. We call it the FCI approach. It allows, in particular,

a more natural treatment of the operations in the poloidal plane and deals without difficulty

with X-point configurations and with O-points such as the magnetic axis, since it is constructed

on coordinate systems with non-singular metric. Tests using the newly developed code FENI-

CIA were carried out to show explicitly the capability to simulate drift-wave propagation with

toroidal mode numbers exceeding the Nyquist cutoff and to show the convergence in a nonlinear

regime using an ITG model.
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