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Introduction

Plasma turbulence evolves from a considerable class of instabilities characterized by long
parallel wavelengths, of the order of the system size, and short perpendicular wavelengths of the
order of the ion gyro-radius. As a consequence, from the numerical viewpoint, one can conceive
that much more efficient codes are made possible by a suitable choice of coordinates, that allow
the smallest number of grid points in a certain direction. Indeed, field-aligned coordinates have
been employed for already a couple of decades in tokamak turbulence simulations [1, 2, 3].
The gain in computational efficiency obtained by using optimal coordinates can be a couple of
orders of magnitude for a turbulence simulation of a large device like ITER.

Field-aligned coordinates employed so far are derived from predefined flux coordinates. The
scope of this work is to illustrate and validate a more general approach that rely only on funda-
mental coordinates independent of the flux surface variables [5].

Turbulent transport in tokamaks is studied via numerical simulations of a variety of model
equations which retain the important physics one wants to study. A fairly general structure of

model equations is given as follows:
GL-S=E(S)+1-S ey

where S is a structure of vectors representing the state of the system. E(S) is a nonlinear operator
that can be treated explicitly without much penalty. L and I represent linear operators such that
the reduced problem obtained by setting E(S) = 0 could be treated implicitly. The splitting of
the right hand side (r.h.s.) between E and I is by no means unique and depends on the physics
to be studied. As a general rule, one aims at treating explicitly only the physics occurring at the
timescale of interest for the specific problem. The main constraint with respect to a generic r.h.s.
is that the implicit problem be linear. We further assume that L and [ are time-independent.
Since we are interested in the treatment of the parallel dynamics, we now specialize Eq. (1) to

the following normalized drift-wave model. This model will be used to illustrate our approach
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throughout the rest of this work:

o+ [¢,log(ng)] +AV u =0
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Here n is the perturbed ion guiding center density, ng is the equilibrium density profile, u is the
ion parallel velocity and ¢ is the electrostatic potential. We define two dimensionless param-
eters: A = a/R x 1/p, where a is the tokamak minor radius, R is the tokamak major radius,
P« = ps/a is the reduced gyro-radius with p; being the ion sound Larmor radius. Moreover 7 is
the ratio of electron temperature to ion temperature 7, /7;. Note that time is normalized to the
Bohm timescale a?/(pscs), where c; is the ion sound speed. The explicit expression of the par-
allel derivative operator V| depends on the magnetic field structure. In the case of a cylindrical
geometry one can write V|| = dy + 1/q(r) dg with (r,0) the polar coordinates in the poloidal
plane and ¢(r) the safety factor.

The Flux-Coordinate Independent (FCI) Approach

The field-aligned coordinate approach presented in [4] still relies on flux coordinates, for
instance (r,0). A new method is presented in [5] that we refer to as FCI (Flux-Coordinate
Independent) approach. One has to look for a change of coordinates from the original (x,y,z)
to a new set (§%,s) such that s can be treated as a slowly-varying coordinate and only the two
E% (a = 1,2) carry the information on the small scales. As discussed in [5], one divides the
domain in a certain number of sectors centered around z;, and extending to the boundary in the
(x,y) directions, with k labeling a given sector. One then considers a set of transformations of
the form:

§% =VEx)+C*(x)(z—z)

s =373k

3)

where V%(x) and C%(x) are yet unknown functions.

Results and Conclusions

We developed a new code that we called FENICIA: Flux indepENdent fleld-aligned CoordInate
Approach, in which we implemented the FCI approach described in the previous section. A
sketchy description of this new code is given in Appendix A of [5]. The actual implementa-

tion of the parallel derivative depends on the scheme of choice. In the following, we consider
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second order centered finite differences, since they are used to solve the drift-wave test model
(2). Here we present numerical tests that were carried out with FENICIA to qualify the new
method. These are of two types: a) a test that demonstrates the capability of the new method to
simulate wave propagation accurately even when the toroidal mode number exceeds the Nyquist
cut-off (half the number of toroidal points) at the given toroidal resolution. This is precisely the
situation where the straightforward approach that computes the parallel derivative as a combi-
nation of the toroidal and poloidal derivatives would fail, and b) a test of convergence using a
nonlinear ITG model. For the tests shown here the box size is 400 x 400 x 20 and m/n = 2,
with (m,n) ranging from (4,2) to (30,15). We start by showing results obtained from Eq. (2)
with log(ng) = 0 (zero drift frequency). The initial velocity is such that there is a single wave
propagating at frequency @ = A(1+1/7)"/2(m/q(r) —n). The results are summarized in Fig. 1
where the error per unit time E = (< (Hexaer — 1) > / < (Nexact)? >) 1/2 45 plotted as a function
of the poloidal mode number for three cases: 1) the full model (2) with L, = 1/4 and A = 12.5,
2) the same model with 1/L, = 0 (no density gradient), and 3) the model with A = 0. The latter
case tests the effect of switching off the parallel dynamics so that the system reduces effectively
to

on+[n,log(ng)] =0 4)

The first thing to notice is that all the tests give an error per unit time much less than one. We
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Figure 1: The relative error between between the exact and the numerical solution as a function of the
poloidal wavenumber m. For case 1: full model with finite drift frequency, we get the blue solid line; For
case 2: full model with zero drift frequency, we get the red dashed line; For case 3: reduced model of

Eq. (4) without sound wave terms, we get the green bullets

remark that the relative difference between case 1 and case 3 is less than 103, which explains
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why the data points for the two cases look almost superposed in Fig. 1. Since the model is
normalized to the Bohm timescale a®/(pyc;), any physics effect occurring on a shorter time
scale is treated accurately.

The second following test shows the convergence of the code using an ITG turbulence model.
Convergence is achieved at nz = 15. Thus, with the new method, one needs only a few tens
of toroidal points to get a good result, regardless of the toroidal mode number, provided that

adequate resolution is available in the poloidal plane.
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Figure 2: convergence test using an ITG turbulence model

In conclusion, a new approach to the problem of field-aligned coordinates for plasma tur-
bulence simulations has been developed. We call it the FCI approach. It allows, in particular,
a more natural treatment of the operations in the poloidal plane and deals without difficulty
with X-point configurations and with O-points such as the magnetic axis, since it is constructed
on coordinate systems with non-singular metric. Tests using the newly developed code FENI-
CIA were carried out to show explicitly the capability to simulate drift-wave propagation with
toroidal mode numbers exceeding the Nyquist cutoff and to show the convergence in a nonlinear

regime using an I'TG model.
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