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Abstract

In this work, we apply the Parareal time-parallelization technique [1] to convection-dominated

problems. In particular, to a 2D drift-waves case using the BETA code and to a 5D gyro-kinetic

ITG simulation using GENE code. Although partial success was previously reported applying

parareal to the drift-wave BETA runs [2], the speed-up of the process was limited by the compro-

mise that must be reached between having a sufficiently fast coarse serial solver for the problem,

and how far from the actual solution the coarse solver is pushed by the approximations made.

This limitation becomes more dramatic in the case of GENE simulations. Here, we propose and

test a new and promising coarse solver based on a semi-lagrangian time advance. Its advantage

comes from the fact that a significant part of the coarse solver can be solved in parallel. As a

result, it can be made faster without paying the penalty of excessive simplifications.

Introduction to Parareal

Generally, physical problems simulated on a computer can be efficiently parallelized only

up to a certain number of processors. With the supercomputers that are available nowadays,

there are often many more processors available then the number that can be efficiently utilized

with standard techniques. It is therefore clear that new parallelization techniques that permit to

increase the number of processors are of great interest. Parareal [1] is a new such parallelization

technique that focuses on the time coordinate. It is based on an iterative process with two stages

for every iteration: 1) a fast coarse time propagator that gives an approximated solution for all

time; 2) an accurate time propagator that is used to correct the solution. The first stage is fast but

must be computed sequentially. The second one is expensive but can be computed in parallel.

The key to success depends on choosing an adequate coarse solver: it must be much faster than

the fine one but, at the same time, not diverge too much from the actual solution.

We introduce next the algorithm with more detail, but we refer the reader to [3] for a more

in-depth description. In general, we will look for the solution represented by the state vector
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λ (r, t) that satisfies the PDE:
∂λ (r, t)

∂ t
= R [λ (r, t)] (1)

Being R[·] a linear or non-linear operator. The total simulation time, T , is split in N chunks,

each of size ∆T , so that T = N∆T . Next, two propagators are defined:

• F [λ (r, t)] is the fine propagator that evolves λ (r, t) exactly during a chunk time ∆T .

• G[λ (r, t)] is the (fast) coarse propagator that gives an approximation to F [λ (r, t)].

As previously commented, parareal is an iterative algorithm so, for every iteration k and chunk

s, it offers the approximation λ k,s(r)' λ (r,Ts). Every iteration k is composed of two stages:

1. For all chunks not converged (labeled by s), compute serially λ k,s(r) = G[λ k,s−1(r)] +

F [λ k−1,s−1(r)]−G[λ k−1,s−1(r)]. This is fast, because G has a low computational cost

and F [λ k−1,s−1(r)] was already computed in previous iterations.

2. Compute in parallel F [λ k,s(r)] for all not-converged chunks. This quantity will be used

in the next iteration. F is expensive computationally, but it is computed in parallel.

3. Check for convergence of new chunks.

If the total number of required iterations K to converge is small relative to N, and if the

coarse solver is fast enough compared with the fine solver so that its contribution to the walltime

is negligible, the total wallclock time of the simulation is reduced by a factor of the order of

N/K. It can be seen that K is small if the coarse solver is a not-too-bad approximation of the

fine solver. This is a rather imprecise statement but, in most practical cases, this can only be

checked by trial-and-error. Be as it may, the key of a good parareal implementation is to find a

fast coarse solver that wanders not to far from the fine one. But finding such a solver is not easy.

Proposed new coarse solver

We propose a new coarse solver that can be made faster without making excessive simplifica-

tions. It is based on using a semi-lagrangian technique that keeps the solver stable and allows to

parallelize parts of the coarse solver thus reducing the wall-clock time. To illustrate it, we will

start with a simple convection problem with fixed velocity, that can be written as:

∂λ (r, t)
∂ t

+v(r) ·∇λ (r, t) = 0 (2)

As Fig. 2 shows, to compute λ (r0, t0) at node r0 at time t0, a semi-lagrangian time advance

requires:
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1. Convect "back in time" the node up to the time t0−dT and obtain the position r′0.

2. Because the problem is convective, λ (r0,T0) is exactly equal to λ (r′0,T0− dt). Thus, it

can be obtained through interpolation from the λ solution in the previous time step.

Figure 1: Semilagrangian two stages algo-

rithm.

At first sight, the semilagrangian time advance

may not appear to be faster than say, an explicit one.

But because the convection velocity has been kept

fixed in Eq. 2, the first stage of the semilagrangian

time advance (the convection of the nodes position)

could be precomputed and stored previously to the

application of the parareal algorithm. In addition,

because the interpolation positions are known, all

the interpolation coefficients could also be precom-

puted. The result is that, to solve the convection

problem in parareal, the computation of the coarse

solver would consist only in applying the interpolation coefficients to λ , which is just sparse

matrix-vector multiplication. Thus, this implementation can become a fast and very accurate

coarse solver.

Of course, the difficulty in applying the proposed coarse solver to real world problems is that,

in general, the convection velocity changes in time as a function of λ . This converts the problem

in non-linear and more complicated to solve:

∂λ (r, t)
∂ t

+v [λ (r, t)] ·∇λ (r, t) = 0 (3)

However, it is possible to apply an extension of the proposed coarse solver by obtaining the

convection velocity field from the previous parareal iteration results. This allows that, at the

end of one parareal iteration, the convection of the nodes for the semilagrangian time advance

could be computed based in that iteration results and prepare the interpolation coefficient for

the next iteration, all of that done in parallel. Thus, one of the highlights of this work is to

realize that, even if standard parareal states that the coarse solver must be computed serially,

part of the work could be computed in parallel if semilagrangian time advance is used. Only the

sparse matrix - vector multiplication required to effectuate the interpolation should be computed

serially. As the parareal algorithm converges to the correct solution, the convection velocity field

will also converge.

Applications to BETA and GENE codes
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Figure 2: Time evolution of the amplitude

of an spatial mode for both BETA (top) and

GENE (bottom). The red line represent the se-

rial solution and the blue one some of the iter-

ations of the parareal one. Good convergence

is found for several turbulence times.

The proposed coarse solver has been tested on

BETA and GENE. BETA implements a 2D plasma

turbulence model based on dissipative-trapped-

electron modes in a uniform magnetic field [4].

GENE is a state-of-the-art 5D gyrokinetic contin-

uum code [5], that solves the non-linear gyroki-

netic equation on a fixed eulerian grid. In both

cases, the coarse solver proposed here has shown

good convergence properties (10-16 chunks per it-

eration), nice ideal efficiencies for a parareal sim-

ulation (15− 25%) and is stable. Fig. 2 shows that

even at the high spatial modes the method shows

good convergence properties and that the parareal

solution accurately reproduces the serial solution

for several turnover times.
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