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Introduction. High power ECRH is widely used nowadays and is considered for application in
ITER. The standard theoretical analysis [1], which dealt with a monotonous plasma density profile,
predicted that the parametric decay instabilities (PDIs) are deeply suppressed in ECRH heating
experiments by convective losses of daughter waves from a decay layer along the magnetic field
and in the radial direction. However, a number of observations obtained last decade evidences the
presence of anomalous phenomena, eloquent example of which is anomalous ion heating often
observed at ECRH experiments in toroidal devices [2–4]. In response to these experimental
challenges, a theory [5–7] have been developed interpreting the anomalous ion heating in terms of
the pump wave parametric decay into the electron Bernstein wave (EBW) and the low frequency
wave, interacting with ion through the ion cyclotron resonance mechanism. The cornerstone of the
theoretical model is a phenomenon of the 2D daughter wave trapping due to non-monotonous
plasma density profile, produced by the pump out effect and the poloidal magnetic field
inhomogenuity [5]. In the case of tokamak plasma possessing axial symmetry the 3D cavity for the
daughter wave can be excited that leads to the pump 2nd harmonic extraordinary wave absolute PDI
[6, 7]. As the EBW radial localization is solely possible in case of narrow enough density
maximum, it’s not universal. Here, we analyze a new universal scenario of the low-threshold PDI
applicable to the stellarator experiment as well and based on the parametric excitation of EBW
trapped in drift wave eddies, filaments or blobs possessing density maximum and aligned with
magnetic field that is demonstrated both by ray tracing consideration and by analytical treatment.

Ray tracing of the EBW in the presence of a coherent turbulent structure. Due to complicated
nature of the hot-plasma Bernstein modes, the only suitable approach to analysing their propagation
is the ray tracing procedure. Assuming the EBW electromagnetic component negligible we use the
non-relativistic equation dispersion function
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 is the plasma dispersion function, q , q  are the

components of the wave vector parallel and perpendicular to the magnetic field H


, and mI  is the
modified Bessel function of the first kind. In order to model the coherent turbulence structure, being
aligned with the magnetic field line and possessing the finite size perpendicular to it, we introduce
the density profile as a sum of the background term 0n  and a sharp perturbation, originated due to
the drift-wave eddy, filament or blob:

     22 2 2 2
0 0exp / / /nn n l q l            , (2)

Here   and 0  are the magnetic surface radius and the radius at which the perturbation is maximal,
  and   are the poloidal and toroidal angles,  q   is the safety factor, 0/ 1n n n    and l  is the
width of the perturbation. For our analysis we choose the position of density perturbation (2) close
to the magnetic axis 0 3 cm  , 0.3l cm  in the millimeter scale that corresponds to trapped electron
mode typical of the ECRH experiments. We suppose also temporal variation of the density
fluctuation negligible during period or inverse growth rate of the decay waves under consideration
in this paper. In the presence of the density perturbation (2) in a close vicinity of the mid-plane the
ray-tracing analysis for the TCV tokamak experimental conditions ( 0 90.8 ,R cm  =24 ,a cm 2 ,eT keV
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Fig. 1.  Phase portrait of the ray
trajectory in the poloidal direction.

Fig. 2. Phase portrait of the ray
trajectory along the flux coordinate.

Figure 3. Phase portrait of the ray
trajectory in the toroidal direction.

Dash - dotted lines – Eq. (3) for 1m  , 0n  , 0k  ; 1
0

333 10n cm  , 2eT keV , 0 13.7H kGs , / 2 82.3EB GHz   .
13 3

0 ,3 10n cm  0 13.7H kGs ) yields the phase dependences of the ray, shown in figures 1 – 3 and
demonstrating its regular, finite but nevertheless complicated behaviour. The ray tracing procedure,
the results of which are given in figures 4 – 6, shows also that the motion of the ray possesses quite
different “time” scales      | ln / | | ln / | | ln / |q t t q t t q t t         , where / / ,q q H H q H H     

/q q H H 

 . It is worth noting that the EBW remains trapped, and the ordering of the ray trajectory
oscillations persists if the relativistic corrections [8] to the electrostatic EBW dispersion relation
 , 0D q r 
   are taken into account. The only difference important for the PDI analysis is that the

frequency of the trapped EBW is downshifted due to the relativistic correction to the value
/ 2 81.65EB GHz    for 2eT keV and to / 2 80.8EB GHz   for 5eT keV . Thus, even small amplitude

density perturbation leads to the 3D EBW trapping in a volume less than the volume of the EBW
toroidal cavity for an axisymmetric non-monotonic density profile [6, 7].

Semi-analytical description of the EBW trapped by the density perturbation. To describe
analytically the 3D ray trapping, we use strong difference between “time” scales of the ray motions
in different projections. In this way we can describe the ray propagation along   coordinate
assuming its adiabatic dependence on the radial   coordinate and the coordinate along the magnetic
field  . In its turn, the description of the ray motion along the radial   direction can be obtained
assuming adiabatic dependence on the coordinate along the magnetic field  . To simplify the
analysis we look for the solution of the Hamiltonian equations in a vicinity of the EBW turning
point in the direction perpendicular to the magnetic field. Solving the system
  0, ,
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  , where the first equation is the

EBW dispersion relation, the second one is a condition of the turning point of its dispersion curve
and the latter is the extremum condition for the dispersion function over coordinate perpendicular to
the magnetic field, gives E  , ( 0, , 0)E Eq q q q q    

  and ( , 0, 0)E Er     
 . Expanding the

dispersion function into the Taylor series (for the details of the procedure we can refer readers to [5-
7]) in a vicinity of ( , , )E E Eq r   , using strong difference between “time” scales in different projections
and imposing the conditions equivalent to the Bohr-Sommerfeld quantization finally gives
parameters of the EBW WKB eigenmode:
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where | ( , 0; , , , )ED D q q q q           , 0D   is a reduced dispersion function making connection
between the arguments , , ,q q    it depends adiabatically on, 0| ( , ; , )x ED D q q q          

  , 0D   is
a reduced dispersion function depending adiabatically on ,q  , 00

( , )ED D q q         . The EBW
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Fig. 4. Dependence of q  on q for the
same parameters as in figs 1-3.

Fig. 5.  Dependence of q  on q  for
the same parameters as in figs. 1-3.

Figure 6. Dependence of q  on q  for
the same parameters as in figures 1-3.
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the last term describes damping of the trapped wave due to its radiative losses.

Parametric excitation of the trapped EBW by the 2nd harmonic extraordinary pump wave. To
elucidate the physics of the 3D trapped EBW parametric excitation we analyze relevant to the
experiment three-wave interaction model in which a wide X microwaves beam propagates from the
launching antenna inwards plasma almost opposite to major radius in the tokamak mid-plane

2 2 2
0 0 0 0 0/ 2exp ( ) / 2yE a w ik x ik i t            с.c., 2 2

0 08 /a P cw , 0P  and w  are the pump wave
power and the beam waist. The basic set of integral equations describing the decay of the X pump
wave into the daughter EBW  expE i t    
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given by (1). In a multi ion-component plasma D  is [10,11]:
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where  0 0 0, , sinI E Eq q k q c      
 , 0 10 12o o    is a tilt angle of the pump wave, and summation

over the sorts of ions j  is performed. In (5), we have kept in mind that for the low frequency
oscillations, propagating obliquely 0 0| | sin max[ / ]cj tjq c     , the ion cyclotron resonance layers
are strongly overlapped and thus the high frequency ion susceptibility appears to be
“unmagnetized”. We analyze the EBW cavity parametric excitation by using the perturbation theory
approach. Following the algorithm proposed in [12], at the first step of the perturbation procedure
we neglect both the trapped EBW dissipative and radiative losses and its non-linear pumping. In
this approximation we represent the EBW potential as      exp E Er b r iq x iq i t       

  . Assuming
the rhs of both equations constituting the system (4) small, we neglect them in zero order
approximation and obtain unperturbed equation  ˆ 0D b    which, according to the previous section
analysis, has at EB  the localized WKB solution      , , ,mnk

xb m x n k       . At the second step of
the perturbation procedure we take into account the trapped EBW dissipative and radiative losses as
well as the non-linear pumping. Substituting the unperturbed EBW solution into the low-frequency
wave equation (4) and seeking the potential of these induced oscillations in the form

0 0( ) ( )exp( ( ) )E Er b r i q k x iq ik i t          
  yields their amplitude in the form
       * 2 2 2
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i I Ib r q D q a b r H y z w         

  . [ , ] [ , ] [ , ]I I ID q D q iD q      , [ , ]ID q   is the
residual part of the dispersion relation of the induced low frequency oscillations, [ , ]ID q   describes
their strong absorption by the electrons or ions. Substituting  b r

  into rhs of the high frequency
equation in (4), multiplying it by *( )mnkb and integrating over the plasma volume, we arrive at the
PDI growth (damping) rate
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 is the growth rate of the PDI in homogeneous plasma theory,

E  characterizes the EBW damping and its radiative losses, ...  stands for averaging over the
eigenmode localization region, cavityV is the volume of the eigenmode localization, PDIV  is
proportional to the volume element within which the three-wave interaction of the pump and
daughter waves occurs. The absolute PDI threshold can be found from the condition , , 0m n k   as
follows  0 0 /th

E cavity PDIP V V  . For the deuterium discharge with small hydrogen impurity fraction
( / 5%,H Dn n  , 0.3D HT keV ) in TCV tokamak, we finally get an estimate of the PDI threshold

0 7.4thP kW . The PDI growth rate 8 1
1,0,02 1.2 10 s   obtained for the pump wave power 0 1.5P MW  is

much higher than the frequency range typical for the long-scale drift turbulence. In this case the low
frequency daughter wave appears to be a slow ion sound wave heavily damped due to the ion
Landau damping. This wave directly transfers the pump power to the ion component. In the course
of the auxiliary ECRH the electron temperature raises abruptly up to 5eT keV  [13] at the
approximately same or little less density. Under these conditions, the 2nd daughter wave is the
heavily damped oscillation induced at frequency 1.6 GHz   by the EC and EB waves non-linear
coupling. This oscillation interacts with accelerated ions. Thus  the pump energy transfer to the ion
channel occurs. In this case the PDI threshold is higher 0 200thP kW . However, it is still exceeded at
the ECRH power values actually used in the TCV experiments. The growth rate for the pump wave
power 0 1.5P MW is about 5 1

1,0,02 0.9 10 s   exceeding the frequency range typical for the long-scale
drift turbulence component 10 100kHz . Note that a powerful ECRH system providing a total power
of 4.5 MW is installed on TCV. A well focused system of the wave launchers allows for localized
plasma heating and rising the electron temperature up to 4 6 keV . Under these circumstances, more
than one pump wave beam can experience a passage through the same turbulent structure,
increasing thus the PDI growth rate up to 5 1

1,0,02 0.45 10M s   (M is an integer less than 7).

Conclusions. In this paper the low-threshold absolute PDIs of the 2nd harmonic X wave are
analyzed. The key element of these models is the coherent structures always arising in the plasma
turbulence and leading to both the non-monotonous plasma density profile and the axial symmetry
breaking. It should be stressed the possible role of the instability in anomalous absorption of the
microwave power by the ion component and, in particular, in fast ion production often observed in
second harmonic ECRH in toroidal plasmas.
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