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The next generation of multi-petawatt laser facility foreseeable through the work of the Ex-

treme Light Infrastructure (ELI) will lead Europe to the cutting edge of ultra-high laser plasma

research. The forefront application of such highly nonlinear laser plasmas is design of novel

sources of ultra-short pulses in the X-ray and γ-ray spectrum range.

Figure 1: Electron-positron-photon

electromagnetic cascade development

in focused laser pulse at the intensity

I = 1025 W/cm2 [1].

The extreme conditions reachable in laser plasmas

serve as laboratory model for astrophysical objects

such as neutron stars.

The key phenomena in external electromagnetic

fields of ultrahigh intensities I > 1024 W/cm2 is the

occurrence of QED cascades. These cascades (also

called avalanches, or showers) are caused by succes-

sive events of hard photon emissions e±+nh̄ω → γ +

e± due to nonlinear Compton scattering and electron-

positron pair photo-production γ +nh̄ω → e++ e− by

hard photons. The emergence of this sort of cascades

may become a dominating feature of laser-matter inter-

actions at ultra-high intensities [1].

The theoretical framework used to describe the interaction of ultra-intense laser fields with

the quantum vacuum or with matter makes use of extended Vlasov equations for electrons,

positrons, and photons. They are given by(
∂t +~v ·∂~x +~F ·∂~p

)
f±(~x,~p, t) (1)

=
∫

d3kW
~E,~B
γ (~k,~p+~k) f±(~x,~p+~k, t)− f±(~x,~p, t)

∫
d3kW

~E,~B
γ (~k,~p)

+
∫

d3kW
~E,~B
± (~k,~p) fγ(~x,~k, t)
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Figure 2: Two dimensional Cartesian and polar tree structure used to handle particles in mo-

mentum space.

and (
∂t +

∂ω

∂~k
·∂~x
)

fγ(~x,~k, t) (2)

=
∫

d3 pW
~E,~B
γ (~k,~p) [ f+(~x,~p, t)+ f−(~x,~p, t)]

− fγ(~x,~k, t)
∫

d3 pW
~E,~B
± (~k,~p)

The transition rates are computed in the limit of the constant crossed field approximation

dWγ(εγ)

dεγ

=−αm2c4

h̄ε2
e


∞∫

x

Ai(ξ )dξ +

(
2
x
+χγ

√
x
)

Ai′(x)

 (3)

dW±(εe)

dεe
=

αm2c4

h̄ε2
γ


∞∫

y

Ai(ξ )dξ +

(
2
y
−χγ

√
y
)

Ai′(y)

 (4)

There are two approaches to calculate integrals in transport equations. One way is based on

the Monte-Carlo method implemented in form of event generators. Recently, this approach was

combined with particle-in-cell method [1, 2] for calculation of quantum effects of hard pho-

ton radiation and pair creation. However, the Monte-Carlo method heavily relies on the use of

random sampling of transport integrals and may lead lead to noisy and possibly unstable so-

lution of the transport equation. Also the event generator requires much finer time and space

discretization than it is needed for accurate resolution of plasma effects. These limitations make

difficult to study nonlinear cascading regime when radiation field is governed by accumulated

electron-positron plasma. As an alternative approach we consider a class of deterministic adap-

tive particle-mesh methods. This method was realized first for the chase of small χ � 1 when

emission is dominated by soft photons ω � ε . In this case the integrals in transport equation
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can be expanded with respect to wave number of photons~k. The detailed derivations are given

in [4, 3]. Here we concern with the numerical solution of the Fokker-Planck type equation

d f (~r,~p, t)
dt

=
∂

∂~p

[
~I(~r,~p, t)

]
+

∂ 2

∂ pα∂ pβ

[
Dαβ (~r,~p, t) f (~r,~p, t)

]
with the coefficients

~I =
∫
~kwrad(~r, t,~p→~k)d3k, ~Dαβ (~r,~p, t) =

1
2

∫
kαkβ wrad(~r, t,~p→~k)d3k.

these integrals can be calculated analytically. This equation can be written in convenient form

of nonlinear convection-diffusion form

∂ f
∂ t

+
~u
γ

∂ f
∂~u

+
∂

∂~u

[
f (~F−~R−~I)

]
=

∂

∂uα

(
Dαβ

∂ f
∂uβ

)
(5)

where Rα = f · ∂Dαβ/∂uα . The convection-diffusion form can be further converted into non-

linear transport equation

∂ f
∂ t

+
~u
γ

∂ f
∂~r

+∇ ·
(

f [~F−R− I +~U ] f
)
= 0, (6)

where ~U =−Dαβ ·∇~u f/ f . This equation is equivalent to "particles" equations

d~r
dt

=
~u
γ
,

d~u
dt

= ~F−~I−~R+~U (7)

To solve this system the Smoothed Particles Hydrodynamics method is adopted for momentum

space. For this purposes we consider smooth kernel W and its derivative ∇W

W (ξ , h) =
C
hD


1− 3

2ξ 2 + 3
4ξ 3

1
4(2−ξ )3

0.

∇W (ξ , h) =
C
hD


−3ξ ·~ξ + 9

4ξ 2 ·~ξ , ξ < 1

−3
4(2−ξ )2 ·

~ξ
ξ
, 1≤ ξ ≤ 2

0, ξ > 2.

(8)

where ~ξ = |~u−~u j|/h, D is the number of dimensions (D = 2 in our case) and C is the normal-

ization factor that depends on the number of dimensions:

C1d =
2
3
, C2d =

10
7π

, C3d =
1
π
.

Knowing W and ∇W we can approximate

~U =−Dαβ ·
∑

Np
j=1 c j∇W (~u−~u j)

∑
Np
j=1 c jW (~u−~u j)

(9)

where c j is the weight of particle. On each step the algorithm integrates equation (7) and recon-

struct both distribution function and gradient of distribution function for calculation of diffusion
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Figure 3: A bunch of electrons in rotating field simulated using the Fokker-Planck equation.

flow field ~U . The calculation of ~U requires search for all neighbors particles within smoothing

length 2h. Our implementation of a searching algorithm makes use of two- and tree-dimensional

spatial trees. Depending on problem one can choose the tree in Cartesian or polar geometry, see

Figure 2. The tree is dynamically adapting if particles are moving. The tree structure is used also

to control locally the smoothness of the distribution function. If necessary particles are added

or deleted. To validate our code we perform preliminary simulation of an electron bunch in ro-

tating electric field ~E = {a0 cos(ωt), a0 sin(ωt),0}, where a0 = eA/mc = 100 and ω = 1 eV.

These parameters corresponds to intensity I ∼ 1022 W/cm2. The rotating field model problem

allows to study the evolution of distribution function due to both classical and quantum radi-

ation reaction. The impact of anisotropic phase space diffusion can be seen in Figure 3 where

distribution function is shown at subsequent moments of time. Although results looks reason-

able the Fokker-Planck approach must be compared with full solution of the transport equation.

This will be the next step in our research.
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